【題目】已知幾何體中,,,,面,,.
(1)求證:平面平面;
(2)求二面角E-BD-F的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)由勾股定理逆定理證得,再由已知得平面,,從而有線面垂直,得面面垂直;
(2)分別以DA、DC所在直線為軸、軸,以D為垂足作面DAC的垂線DZ為軸,建系,寫出各點坐標(biāo),求出二面角兩個面的法向量,由法向量夾角的余弦值得二面角的余弦值(注意判斷二面角是銳角還是鈍角).
(1)證明:在直角梯形中由已知可得
,且面,
平面,
面,,
,面,面
∴面
且面,故面面;
(2)分別以DA、DC所在直線為軸、軸,以D為垂足作面DAC的垂線DZ為軸,建系如圖
,
則,
設(shè)面DEB的法向量為,
則,
取,則,故
設(shè)面DBF的法向量為,則,
取,則,故
則,
由圖可得二面角E-BD-F的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點為極點,軸正半軸為極軸建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)寫出直線和曲線的直角坐標(biāo)方程;
(2)過動點且平行于的直線交曲線于兩點,若,求動點到直線的最近距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】時至21世紀(jì).環(huán)境污染已經(jīng)成為世界各國面臨的一大難題,其中大氣污染是目前城市急需應(yīng)對的一項課題.某市號召市民盡量減少開車出行以綠色低碳的出行方式支持節(jié)能減排.原來天天開車上班的王先生積極響應(yīng)政府號召,準(zhǔn)備每天從騎自行車和開小車兩種出行方式中隨機(jī)選擇一種方式出行.從即日起出行方式選擇規(guī)則如下:第一天選擇騎自行車方式上班,隨后每天用“一次性拋擲6枚均勻硬幣”的方法確定出行方式,若得到的正面朝上的枚數(shù)小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.
(1)求王先生前三天騎自行車上班的天數(shù)X的分布列;
(2)由條件概率我們可以得到概率論中一個很重要公式——全概率公式.其特殊情況如下:如果事件相互對立并且,則對任一事件B有.設(shè)表示事件“第n天王先生上班選擇的是騎自行車出行方式”的概率.
①用表示;
②王先生的這種選擇隨機(jī)選擇出行方式有沒有積極響應(yīng)該市政府的號召,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車制造廠制造了某款汽車.為了了解汽車的使用情況,通過問卷的形式,隨機(jī)對50名客戶對該款汽車的喜愛情況進(jìn)行調(diào)查,如圖1是汽車使用年限的調(diào)查頻率分布直方圖,如表2是該50名客戶對汽車的喜愛情況.
表2
不喜歡該款汽車 | 喜歡該款汽車 | 總計 | |
女士 | 11 | ||
男士 | 23 | 30 | |
總計 |
(1)將表2補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為是否喜歡該款汽車與性別有關(guān);
(2)根據(jù)圖中的數(shù)據(jù),甲說:“中位數(shù)在組內(nèi)”;乙說:“平均數(shù)大于中位數(shù)”;丙說:“中位數(shù)和平均數(shù)一樣”,針對三位同學(xué)的說法,你認(rèn)為哪種說法合理,給出說明.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間與極值;
(2)當(dāng)時, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進(jìn)行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個人的血分別化驗,這時需要驗1000次.
方案②:按個人一組進(jìn)行隨機(jī)分組,把從每組個人抽來的血混合在一起進(jìn)行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認(rèn)為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進(jìn)行一次化驗,這樣,該組個人的血總共需要化驗次.
假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.
(1)設(shè)方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;
(2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】向量集合,對于任意,以及任意,都有,則稱為“類集”,現(xiàn)有四個命題:
①若為“類集”,則集合也是“類集”;
②若,都是“類集”,則集合也是“類集”;
③若都是“類集”,則也是“類集”;
④若都是“類集”,且交集非空,則也是“類集”.
其中正確的命題有________(填所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為2,平面過正方體的一個頂點,且與正方體每條棱所在直線所成的角相等,則該正方體在平面內(nèi)的正投影面積是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com