【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入單位:千元與月儲蓄單位:千元的數(shù)據(jù)資料,算得,,,附:線性回歸方程中,,,其中,為樣本平均值.

求家庭的月儲蓄y對月收入x的線性回歸方程;

判斷變量xy之間是正相關(guān)還是負相關(guān);

若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.

【答案】(1) ;(2)見解析;(3)千元

【解析】

由題意求出,,根據(jù),,代入公式求值,又由,得出從而得到回歸直線方程;變量y的值隨x的值增加而增加,可知xy之間是正相關(guān)還是負相關(guān);代入即可預(yù)測該家庭的月儲蓄.

由題意知,,,

,

那么:,

,

故所求回歸方程為

由于變量y的值隨x的值增加而增加,即

xy之間是正相關(guān).

代入回歸方程可以預(yù)測該家庭的月儲蓄為千元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調(diào)查該公司職工每周平均上網(wǎng)的時間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時間的樣本數(shù)據(jù)(單位:小時)

男職工

女職工

總計

每周平均上網(wǎng)時間不超過4個小時

每周平均上網(wǎng)時間超過4個小時

70

總計

300

(Ⅰ)應(yīng)收集多少名女職工樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,.試估計該公司職工每周平均上網(wǎng)時間超過4小時的概率是多少?

(Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時間超過4個小時.請將每周平均上網(wǎng)時間與性別的列聯(lián)表補充完整,并判斷是否有95%的把握認為“該公司職工的每周平均上網(wǎng)時間與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】身體素質(zhì)拓展訓(xùn)練中,人從豎直墻壁的頂點A沿光滑桿自由下滑到傾斜的木板上(人可看作質(zhì)點),若木板的傾斜角不同,人沿著三條不同路徑AB、AC、AD滑到木板上的時間分別為t1、t2t3,若已知ABAC、AD與板的夾角分別為70o90o105o,則(

A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能確定t1t2、t3之間的關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:“方程x2﹣ax+a+3=0有解”,q:“ ﹣a≥0在[0,+∞)上恒成立”,若p或q為真命題,p且q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,

(Ⅰ)求函數(shù)R上的解析式;

(Ⅱ)若,函數(shù),是否存在實數(shù)m使得的最小值為,若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +
(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)= [f2(x)﹣2]+f(x)(a為實數(shù)),求F(x)在a<0時的最大值g(a);
(3)對(2)中g(shù)(a),若﹣m2+2tm+ ≤g(a)對a<0所有的實數(shù)a及t∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有下列結(jié)論:

的定義域為(-1, 1); 的值域為(, );

的圖象關(guān)于原點成中心對稱; 在其定義域上是減函數(shù);

⑤對的定義城中任意都有.

其中正確的結(jié)論序號為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上一動點,圓心關(guān)于軸的對稱點為,點分別是線段上的點,且.

(1)求點的軌跡方程;

(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案