求與圓切于點(4,-1)且半徑為1的圓的方程.

答案:略
解析:

設所求圓的圓心為P(a,b),

,      、

若兩圓外切,則有

,    、

聯(lián)立①、②解得a=5,b=1,

∴方程為

若兩圓內切,則有

,    、

聯(lián)立①、③解得a=3b=1,

∴方程為

∴所求圓方程為


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)自圓O外一點P引切線與圓切于點A,M為PA中點,過M引割線交圓于B,C兩點.求證:∠MCP=∠MPB.
(2)在平面直角坐標系xOy中,已知四邊形ABCD的四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經矩陣M=
10
k1
表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結論.
(3)已知A是曲線ρ=12sinθ上的動點,B是曲線ρ=12cos(θ-
π
6
)
上的動點,試求AB的最大值.
(4)設p是△ABC內的一點,x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明
x
+
y
+
z
1
2R
a2+b2+c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

求與圓切于點(4,-1)且半徑為1的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇同步題 題型:解答題

(附加題)
(1)自圓O外一點P引切線與圓切于點A,M為PA中點,過M引割線交圓于B,C兩點.
求證:∠MCP=∠MPB.
(2)在平面直角坐標系xOy中,已知四邊形ABCD的四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經矩陣表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結論.
(3)已知A是曲線ρ=12sinθ上的動點,B是曲線上的動點,試求AB的最大值.
(4)設p是△ABC內的一點,x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)自圓O外一點P引切線與圓切于點A,M為PA中點,過M引割線交圓于B,C兩點.求證:∠MCP=∠MPB.
(2)在平面直角坐標系xOy中,已知四邊形ABCD的四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經矩陣M=
10
k1
表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結論.
(3)已知A是曲線ρ=12sinθ上的動點,B是曲線ρ=12cos(θ-
π
6
)
上的動點,試求AB的最大值.
(4)設p是△ABC內的一點,x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明
x
+
y
+
z
1
2R
a2+b2+c2
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案