精英家教網 > 高中數學 > 題目詳情
設m、n為不重合的兩條直線,α、β為不重合的兩個平面,下列命題為真命題的是( )
A.如果m、n是異面直線,m?α,n?α,那么n∥α;
B.如果m、n是異面直線,m?α,n?α,那么n與α相交;
C.如果m、n共面,m?α,n∥α,那么m∥n;
D.如果m?β,m∥α,n?α,n∥β,那么m∥n
【答案】分析:對于答案A,n可以和平面α相交,故A錯,
對于B,n可以和平面α平行,故B錯,
對于C,因為m、n共面,所以m、n平行或相交,又m?α,n∥α,所以m∥n;即C對,
對于D,因為當α∥β時,m、n可能是異面直線,故D錯.
解答:解:如圖,可知(A)不正確
對于(B),當n與α平行時,也可以滿足m與n異面的條件,故(B)不正確
對于(C),因為m、n共面,可設這個平面為γ,又因為m?α,故m是平面α與γ的交線
根據線面平行的性質定理,當n∥α時,必定有m∥n.(C)正確
對于(D),當α與β相交時命題正確,但當α∥β時,m、n可能是異面直線.故(D)錯誤
故選:C
點評:本題考查空間中直線和平面的位置關系.涉及到兩直線共面和異面,線面平行等知識點,在證明線面平行時,其常用方法是在平面內找已知直線平行的直線.當然也可以用面面平行來推導線面平行.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

7、設m、n為不重合的兩條直線,α、β為不重合的兩個平面,下列命題為真命題的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

設m、n為不重合的兩條直線,α、β為不重合的兩個平面,下列命題為真命題的是


  1. A.
    如果m、n是異面直線,m?α,n?α,那么n∥α;
  2. B.
    如果m、n是異面直線,m?α,n?α,那么n與α相交;
  3. C.
    如果m、n共面,m?α,n∥α,那么m∥n;
  4. D.
    如果m?β,m∥α,n?α,n∥β,那么m∥n

查看答案和解析>>

科目:高中數學 來源: 題型:

設m、n為不重合的直線,α、α1、β、β1、γ為兩兩不重合的平面.對于下列四個命題:①α內的任一直線都平行于βα∥β;②α∥β,m*α,n*βm∥n;③α⊥β,β⊥γα⊥γ;④α∥α1,β∥β1,α⊥βα1⊥β1.其中正確的是

A.①④               B.②④                C.①③                  D.③④

查看答案和解析>>

科目:高中數學 來源:2010年四川省成都市高考數學三模試卷(文科)(解析版) 題型:選擇題

設m、n為不重合的兩條直線,α、β為不重合的兩個平面,下列命題為真命題的是( )
A.如果m、n是異面直線,m?α,n?α,那么n∥α;
B.如果m、n是異面直線,m?α,n?α,那么n與α相交;
C.如果m、n共面,m?α,n∥α,那么m∥n;
D.如果m?β,m∥α,n?α,n∥β,那么m∥n

查看答案和解析>>

同步練習冊答案