(本題20分,第1小題滿分4分,第2小題滿分6分,第3小題6分,第4小題4分)

         我們知道,判斷直線與圓的位置關系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關系有類似的判別方法嗎?請同學們進行研究并完成下面問題。

   (1)設F1、F2是橢圓的兩個焦點,點F1、F2到直線的距離分別為d1、d2,試求d1·d2的值,并判斷直線L與橢圓M的位置關系。

   (2)設F1、F2是橢圓的兩個焦點,點F1、F2到直線        mn不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1·d2的值。

   (3)試寫出一個能判斷直線與橢圓的位置關系的充要條件,并證明。

   (4)將(3)中得出的結論類比到其它曲線,請同學們給出自己研究的有關結論(不必證明)。

(本題20分,第1小題滿分4分,第2小題滿分6分,第3小題6分,第4小題4分)

   (1); ………………2分

    聯(lián)立方程; …………3分

    與橢圓M相交。 …………4分

   (2)聯(lián)立方程組

    消去

  

   (3)設F1、F2是橢圓的兩個焦點,點F1、F2到直線

的距離分別為d1、d2,且F1、F2在直線L的同側。那么直線L與橢圓相交的充要條件為:;直線L與橢圓M相切的充要條件為:;直線L與橢圓M相離的充要條件為: ……14分

    證明:由(2)得,直線L與橢圓M相交

   

    命題得證。

   (寫出其他的充要條件僅得2分,未指出“F1、F2在直線L的同側”得3分)

  

(4)可以類比到雙曲線:設F1、F2是雙曲線的兩個焦點,點F1、F2到直線距離分別為d1、d2,且F1、F2在直線L的同側。那么直線L與雙曲線相交的充要條件為:;直線L與雙曲線M相切的充要條件為:;直線L與雙曲線M相離的充要條件為:………………20分

   (寫出其他的充要條件僅得2分,未指出“F1、F2在直線L的同側”得3分)


解析:

同答案

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011屆上海市閘北區(qū)高三第一學期期末數(shù)學理卷 題型:解答題

(滿分20分)本題有2小題,第1小題12分,第2小題8分.
已知數(shù)列{}和{}滿足:對于任何,有為非零常數(shù)),且
(1)求數(shù)列{}和{}的通項公式;
(2)若的等差中項,試求的值,并研究:對任意的,是否一定能是數(shù)列{}中某兩項(不同于)的等差中項,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市十三校高三上學期第一次聯(lián)考試題文科數(shù)學 題型:解答題

(本題滿分14分,第1小題滿分7分,第2小題滿分7分)

為了研究某種癌細胞的繁殖規(guī)律和一種新型抗癌藥物的作用,將癌細胞注入一只小白鼠體內進行實驗,經(jīng)檢測,癌細胞的繁殖規(guī)律與天數(shù)的關系如下表.已知這種癌細胞在小白鼠體內的個數(shù)超過時小白鼠將會死亡,注射這種抗癌藥物可殺死其體內癌細胞的.

天數(shù)

1

2

3

4

5

6

7

癌細胞個數(shù)

1

2

4

8

16

32

64

(1)要使小白鼠在實驗中不死亡,第一次最遲應在第幾天注射該種藥物?(精確到1天)

(2)若在第10天,第20天,第30天,……給小白鼠注射這種藥物,問第38天小白鼠是否仍然存活?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市高三模擬考試理科數(shù)學 題型:解答題

(本題滿分14分,其中第1小題6分,第2小題8分)

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:cm)滿足關系:,若不建隔熱層,每年能源消耗費用為8萬元.設為隔熱層建造費用與20年的能源消耗費用之和.

(1)求的值及的表達式;

(2)隔熱層修建多厚時,總費用達到最小,并求最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年上海市閘北區(qū)高三第一學期期末數(shù)學理卷 題型:解答題

(滿分20分)本題有2小題,第1小題12分,第2小題8分.

已知數(shù)列{}和{}滿足:對于任何,有為非零常數(shù)),且

(1)求數(shù)列{}和{}的通項公式;

(2)若的等差中項,試求的值,并研究:對任意的,是否一定能是數(shù)列{}中某兩項(不同于)的等差中項,并證明你的結論.

 

查看答案和解析>>

同步練習冊答案