如圖,在△ABC中,數(shù)學(xué)公式,數(shù)學(xué)公式,L為線段BC的垂直平分線,L與BC交與點(diǎn)D,E為L(zhǎng)上異于D的任意一點(diǎn),
(1)求數(shù)學(xué)公式的值.
(2)判斷數(shù)學(xué)公式的值是否為一個(gè)常數(shù),并說(shuō)明理由.

解:法1:(1)由已知可得,,

=
(2)的值為一個(gè)常數(shù)∵L為L(zhǎng)為線段BC的垂直平分線,L與BC交與點(diǎn)D,E為L(zhǎng)上異于D的任意一點(diǎn),
,
故:=
解法2:(1)以D點(diǎn)為原點(diǎn),BC所在直線為X軸,L所在直線為Y軸建立直角坐標(biāo)系,可求A(),
此時(shí),,
(2)設(shè)E點(diǎn)坐標(biāo)為(0,y)(y≠0),
,
(常數(shù)).
分析:法一:(1)由題意及圖形,可把向量用兩個(gè)向量的表示出來(lái),再利用數(shù)量積的公式求出數(shù)量積;
(2)將向量表示出來(lái),再由向量的數(shù)量積公式求數(shù)量積,根據(jù)其值的情況確定是否是一個(gè)常數(shù);
法二:(1)由題意可以以BC所在直線為X軸,DE所在直線為Y軸建立坐標(biāo)系,得出各點(diǎn)的坐標(biāo),由向量坐標(biāo)的定義式求出的坐標(biāo)表示,由向量的數(shù)量積公式求數(shù)量積;
(2)設(shè)E點(diǎn)坐標(biāo)為(0,y)(y≠0),表示出向量的坐標(biāo)再由向量的數(shù)量積坐標(biāo)表示公式求數(shù)量積即可
點(diǎn)評(píng):本題考查向量在幾何中的應(yīng)用,本題采用了二種解法,一是基向量法,一是向量的坐標(biāo)表示,解題的關(guān)鍵是建立坐標(biāo)系與設(shè)定其向量
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長(zhǎng);
(2)計(jì)算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
,
AC
=b
,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
(1)求∠ADC的大;
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案