分析 (I)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(Ⅱ)存在$m≥\frac{1}{2}$.由于bn=$\frac{1}{{({n+1}){a_n}}}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂項(xiàng)求和”方法即可得出.
解答 解:(Ⅰ)由{an}為等差數(shù)列,設(shè)公差為d,則an=a1+(n-1)d,
∵a3是a1和a9的等比中項(xiàng),
∴${a}_{3}^{2}$=a1•a9,即(2+2d)2=2(2+8d),
解得d=0(舍)或d=2,
∴an=2+2(n-1)=2n.
(Ⅱ)存在$m≥\frac{1}{2}$.
bn=$\frac{1}{{({n+1}){a_n}}}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,
∴數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{1}{2}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{2}(1-\frac{1}{n+1})$$<\frac{1}{2}$,
∴存在實(shí)數(shù)m$≥\frac{1}{2}$,使得Sn<m對(duì)于任意的n∈N+恒成立.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”、“放縮法”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{5}$,19] | B. | [-$\frac{1}{5}$,+∞) | C. | [3,19] | D. | [-$\frac{1}{5}$,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com