20.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,a2=3,Sn+1=4Sn-3Sn-1(n≥2),若對(duì)于任意n∈N*,當(dāng)t∈[-1,1]時(shí),不等式2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$)<x2+tx+1恒成立,則實(shí)數(shù)x的取值范圍為(-∞,-2]∪[2,+∞).

分析 a1=1,a2=3,Sn+1=4Sn-3Sn-1(n≥2),可得Sn+1-Sn=3(Sn-Sn-1),因此an+1=3an,n=1時(shí)也成立.利用等比數(shù)列的通項(xiàng)公式可得an=3n-1,$\frac{1}{{a}_{n}}$=$(\frac{1}{3})^{n-1}$,
因此數(shù)列$\{\frac{1}{{a}_{n}}\}$是等比數(shù)列.利用等比數(shù)列的求和公式可得:2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$).由對(duì)于任意n∈N*,當(dāng)t∈[-1,1]時(shí),不等式2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$)<x2+tx+1恒成立,可得3≤x2+tx+1,即x2+tx-2≥0,令f(t)=xt+x2-2,利用一次函數(shù)的單調(diào)性即可得出.

解答 解:∵a1=1,a2=3,Sn+1=4Sn-3Sn-1(n≥2),
∴a1=1,a2=3,Sn+1-Sn=3(Sn-Sn-1),
∴an+1=3an,n=1時(shí)也成立.
∴數(shù)列{an}是公比為3的等比數(shù)列,首項(xiàng)為1.
∴an=3n-1
∴$\frac{1}{{a}_{n}}$=$(\frac{1}{3})^{n-1}$,
因此數(shù)列$\{\frac{1}{{a}_{n}}\}$是首項(xiàng)為1,公比為$\frac{1}{3}$的等比數(shù)列.
2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$)=2×$\frac{[1-(\frac{1}{3})^{n}]}{1-\frac{1}{3}}$=3-$\frac{1}{{3}^{n-1}}$.
∵對(duì)于任意n∈N*,當(dāng)t∈[-1,1]時(shí),不等式2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$)<x2+tx+1恒成立,
∴3≤x2+tx+1,
化為x2+tx-2≥0,
令f(t)=xt+x2-2,
則$\left\{\begin{array}{l}{f(-1)={x}^{2}-x-2≥0}\\{f(1)={x}^{2}+x-2≥0}\end{array}\right.$,解得x≥2或x≤-2,
∴實(shí)數(shù)x的取值范圍為(-∞,-2]∪[2,+∞).
故答案為:(-∞,-2]∪[2,+∞).

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等比數(shù)列的通項(xiàng)公式與求和公式、恒成立問(wèn)題的等價(jià)轉(zhuǎn)化方法、一次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}的首項(xiàng)a1>0,前n項(xiàng)和為Sn.?dāng)?shù)列$\left\{{\left.{\frac{S_n}{n}}\right\}}$是公差為$\frac{a_1}{2}$的等差數(shù)列.
(1)求$\frac{a_6}{a_2}$的值;
(2)數(shù)列{bn}滿足:bn+1+(-1)pnbn=2an,其中n,p∈N*.
(。┤魀=a1=1,求數(shù)列{bn}的前4k項(xiàng)的和,k∈N*;
(ⅱ)當(dāng)p=2時(shí),對(duì)所有的正整數(shù)n,都有bn+1>bn,證明:${2^{a_1}}$-${2^{2{a_1}-1}}$<b1<${2^{{a_1}-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.一個(gè)幾何體的三視圖都是腰長(zhǎng)為2 的等腰直角三角形,則這個(gè)幾何體的表面積為( 。
A.6+2$\sqrt{3}$B.2$\sqrt{3}$C.6D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△A BC中,若$\overrightarrow{{A}{B}}$=(1,2),$\overrightarrow{{A}C}$=(-2,3),則△ABC的面積為(  )
A.$\frac{7}{2}$B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$.
( I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)將函數(shù)f(x)的圖象各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后向左平移$\frac{π}{3}$個(gè)單位,得函數(shù)F(x)的圖象.若a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a+c=4,且F(B)=0,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè) A為雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左頂點(diǎn),直線x=a與雙曲線的一條漸近線交于點(diǎn) M,點(diǎn) M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為 N,若雙曲線的離心率為$\frac{{\sqrt{21}}}{3}$,則∠M A N=(  )
A.120°B.135°C.150°D.105°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某村有2500人,其中青少年1000人,中年人900人,老年人600人,為了調(diào)查本村居民的血壓情況,采用分層抽樣的方法抽取一個(gè)樣本,若從中年人中抽取36人,從青年人和老年人中抽取的個(gè)體數(shù)分別為a,b,則直線ax+by+8=0上的點(diǎn)到原點(diǎn)的最短距離為$\frac{{\sqrt{34}}}{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=log3x,若正數(shù)a,b滿足b=9a,則f(a)-f(b)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線和離心率為sin$\frac{π}{4}$的橢圓有相同的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個(gè)公共點(diǎn),若cos∠F1PF2=$\frac{1}{2}$,則雙曲線的離心率等于( 。
A.2B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案