設(shè)橢圓(a>b>0)的左焦點為F,上頂點為A,過點A與AF垂直的直線分別交橢圓和x軸正半軸于P、Q兩點,且P分向量所成的比為8:5.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若過A、Q、F三點的圓恰好與直線l:x+y+3=0相切,求橢圓方程.

解:(Ⅰ)設(shè)點Q(x0,0),F(-c,0),

其中c=,A(0,b).

由P分所成的比為8:5,得P(), 

.   ① 

=(c,b), =(x0,-b),,

·=0,∴cx0-b2=0,x0=       ② 

由①②知2b2=3ac,∴2c2+3ac-2a2=0.

∴2e2+3e-2=0,∴e=

(Ⅱ)滿足條件的圓心為

(c,0) 

圓半徑r=

由圓與直線l:

x+y+3=0相切得,,

又a=2c,∴c=1,a=2,b=.

∴橢圓方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

設(shè)橢圓(ab0)的右焦點為F1,右準(zhǔn)線為l1.若過F1且垂直于x軸的弦長等于F1l1的距離,則橢圓的離心率是( )

  A     B     C     D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:022

設(shè)橢圓(ab>0)的右焦點為F1、右準(zhǔn)線為l1,若過F1且垂直于x軸的弦長等于點F1l1的距離,則橢圓的離心率是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓 (a>b>0)的左頂點為A,若橢圓上存在一點P,使∠OPA= (O為原點),求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖南省下學(xué)期高二第一次月考數(shù)學(xué)試題 題型:解答題

(本小題滿分14分)設(shè)橢圓(a>b>0)的左焦點為F1(-2,0),左準(zhǔn)線 L1 與x軸交于點N(-3,0),過點N且傾斜角為300的直線L交橢圓于A、B兩點。

     (1)求直線L和橢圓的方程;

     (2)求證:點F1(-2,0)在以線段AB為直徑的圓上

 

查看答案和解析>>

同步練習(xí)冊答案