分析 在△ABC中使用正弦定理解出B,得出sin∠ADC,在△ACD中使用正弦定理解出AD.
解答 解在△ABC中,由正弦定理得$\frac{sinB}=\frac{c}{sinC}$,即$\frac{1}{sinB}=\frac{2}{\frac{\sqrt{3}}{2}}$,
解得sinB=$\frac{\sqrt{3}}{4}$.∴cosB=$\frac{\sqrt{13}}{4}$.
∴sin∠BAC=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{39}+\sqrt{3}}{8}$.
∵∠B=∠DAC,∴∠ADC=∠B+∠BAD=∠DAC+∠BAD=∠BAC.
∴sin∠ADC=sin∠BAC=$\frac{\sqrt{39}+\sqrt{3}}{8}$.
在△ACD中,由正弦定理得$\frac{AC}{sin∠ADC}=\frac{AD}{sinC}$,即$\frac{1}{\frac{\sqrt{39}+\sqrt{3}}{8}}=\frac{AD}{\frac{\sqrt{3}}{2}}$,
解得AD=$\frac{\sqrt{13}-1}{3}$.
故答案為$\frac{\sqrt{13}-1}{3}$.
點(diǎn)評(píng) 本題考查了正弦定理在解三角形中的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
語(yǔ)文成績(jī)分組 | [50,60) | [60,70) | [70,80) | [90,100) | [100,110) | [110,120] |
頻數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π+2}{3}$ | B. | $\frac{5π-2}{3}$ | C. | $\frac{5π}{3}$-2 | D. | 2$π-\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,3) | B. | (3,4) | C. | (4,5) | D. | (5,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | -8 | C. | 8 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com