解析:由題意知

當(dāng)-2≤x≤1時,f(x)=x-2,

當(dāng)1<x≤2時,f(x)=x3-2,

又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數(shù),

f(x)的最大值為f(2)=23-2=6.

答案:C

定義在R上的函數(shù)f(x)滿足對任意xy∈R恒有f(xy)=f(x)+f(y),且f(x)不恒為0.

(1)求f(1)和f(-1)的值;

(2)試判斷f(x)的奇偶性,并加以證明;

(3)若x≥0時f(x)為增函數(shù),求滿足不等式f(x+1)-f(2-x)≤0的x的取值集合.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(天津卷解析版) 題型:解答題

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當(dāng)x變化時,,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

,得

①當(dāng)時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時,,對于,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

當(dāng)時,

                      

                      

在(2)中取,得 ,

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

于是對一切恒成立,當(dāng)且僅當(dāng).        ①

當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),

從而,

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高考模擬預(yù)測數(shù)學(xué)文試卷(解析版) 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足O為坐標(biāo)原點),當(dāng) 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點.

(Ⅰ)當(dāng)直線過右焦點時,求直線的方程;

(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

第二問中設(shè),由,消去x,得,

則由,知<8,且有

由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>

同步練習(xí)冊答案