【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),對(duì)于任意正實(shí)數(shù),不等式恒成立,試判斷實(shí)數(shù)的大小關(guān)系.

【答案】(1)當(dāng)時(shí)增;減;當(dāng)時(shí)減;增;(2)

【解析】

1)求出函數(shù)的導(dǎo)數(shù),分類討論,即可求解函數(shù)的單調(diào)性;

2)設(shè),求導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的極值,轉(zhuǎn)化為,即可求解.

1)由題意,函數(shù),則,

,解得,

當(dāng)時(shí),在上,,函數(shù)單調(diào)遞增;

上,,函數(shù)單調(diào)遞減.

當(dāng)時(shí),在上,,函數(shù)單調(diào)遞減;

上,,函數(shù)單調(diào)遞增.

綜上可得:當(dāng)時(shí),函數(shù)單調(diào)遞增,在單調(diào)遞減;當(dāng)時(shí),函數(shù)單調(diào)遞減,在單調(diào)遞增.

2)當(dāng)時(shí),設(shè)

,令,即,解得,

當(dāng)時(shí),,即單調(diào)遞增,

當(dāng)時(shí),,即單調(diào)遞減,

所以,

要使得不等式恒成立,只需,即,

所以,故實(shí)數(shù)的大小關(guān)系為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求;

2)若,且,求的值.

3)畫出函數(shù)在區(qū)間上的圖像(完成列表并作圖).

1)列表

x

0






y


1


1



2)描點(diǎn),連線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》規(guī)定,交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通7座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是保費(fèi)浮動(dòng)機(jī)制,保費(fèi)與上一、二、三個(gè)年度車輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

投保類型

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通7座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號(hào)私家車在下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

20

10

10

20

15

5

(1)根據(jù)上述樣本數(shù)據(jù),估計(jì)一輛普通7座以下私家車(車齡已滿3年)在下一年續(xù)保時(shí),保費(fèi)高于基準(zhǔn)保費(fèi)的概率;

(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基準(zhǔn)保費(fèi)的車輛記為事故車.

①若該銷售商部門店內(nèi)現(xiàn)有6輛該品牌二手車(車齡已滿3年),其中兩輛事故車,四輛非事故車.某顧客在店內(nèi)隨機(jī)挑選兩輛車,求這兩輛車中恰好有一輛事故車的概率;

②以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率.該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,若購進(jìn)一輛事故車虧損4000元,一輛非事故車盈利8000元.試估計(jì)這批二手車一輛車獲得利潤(rùn)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京101中學(xué)校園內(nèi)有一個(gè)“少年湖”,湖的兩側(cè)有一個(gè)音樂教室和一個(gè)圖書館,如圖,若設(shè)音樂教室在A處,圖書館在B處,為測(cè)量A,B兩地之間的距離,某同學(xué)選定了與A,B不共線的C處,構(gòu)成△ABC,以下是測(cè)量的數(shù)據(jù)的不同方案:①測(cè)量∠A,AC,BC;②測(cè)量∠A,B,BC;③測(cè)量∠C,AC,BC;④測(cè)量∠AC,B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三個(gè)數(shù)成等差數(shù)列,記對(duì)應(yīng)點(diǎn)的曲線是.

(1)求曲線的方程;

(2)已知點(diǎn),點(diǎn),點(diǎn),過點(diǎn)任作直線與曲線相交于兩點(diǎn),設(shè)直線的斜率分別為,若,求滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:

為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

(2)預(yù)測(cè)該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)交警從這5個(gè)月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計(jì)

駕齡不超過1年

22

8

30

駕齡1年以上

8

12

20

合計(jì)

30

20

50

能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

參考公式及數(shù)據(jù):,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)滿足f(0)=2,fx)-fx-1)=2x+1,求函數(shù)fx2+1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:x∈R,ax2﹣2ax+1>0,命題q:指數(shù)函數(shù)f(x)=ax(a>0且a≠1)為減函數(shù),則P是q的( 。

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案