已知
a
=(1,1),
b
=(1,-1),
c
=(-1,2),則向量
c
可用向量
a
、
b
表示為
 
分析:設(shè)
c
a
b
,則可得 (-1,2)=(λ+μ,λ-μ ),解得 λ=
1
2
,μ=-
3
2
,可得
c
=
1
2
a
-
3
2
b
 即為所求.
解答:解:設(shè)
c
a
b
,則 (-1,2)=(λ+μ,λ-μ ),∴λ=
1
2
,μ=-
3
2
,
c
=
1
2
a
-
3
2
b

故答案為:
c
=
1
2
a
-
3
2
b
點(diǎn)評(píng):本題考查兩個(gè)向量坐標(biāo)形式的運(yùn)算,用待定系數(shù)法求出λ 和μ 的值,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,1),B(4,3),C(2m,m-1),
(Ⅰ)若A,B,C可構(gòu)成三角形,求實(shí)數(shù)m所要滿(mǎn)足的條件;
(Ⅱ)若A,B,C,構(gòu)成以∠C為直角的直角三角形,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(x,y)在平行四邊形ABCD內(nèi),已知A(-1,-1),B(2,1),D(0,2),則z=2x+y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合An={1,3,7,…,(2n-1)}(n∈N*),若從集合An中任取k(k=1,2,3,…,n)個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為T(mén)K(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+T3+…+Tn.例如當(dāng)n=1時(shí),A1={1},T1=1,S1=1;當(dāng)n=2時(shí),A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.則Sn=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)已知a+a-1=3,求a2+a-2的值;
(Ⅱ)化簡(jiǎn)求值:1.10+
364
-0.5-2+lg25+2lg2;
(Ⅲ)解不等式:log2(x+1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b是不共線的向量,若1a+b,=a+λ2b(λ1、λ2∈R)則A、B、C三點(diǎn)共線的充要條件為(    )

A.λ12=-1                              B.λ12=1

C.λ1λ2-1=0                              D.λ1·λ2+1=0

查看答案和解析>>

同步練習(xí)冊(cè)答案