已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于常數(shù)λ(λ>0).求動點M的軌跡方程,說明它表示什么曲線。
當λ=1時,方程化為x=,它表示一條直線,該直線與x軸垂直且交x軸于點(,0);
當λ≠1時,方程化為它表示圓,圓心的坐標為(),半徑為

試題分析:
思路分析:利用“直接法”求得(λ2-1)(x2+y2)-4λ2x+(1+4λ2)=0.
討論λ=1和λ≠1的兩種情況。
當λ=1時,方程化為x=,它表示一條直線,該直線與x軸垂直且交x軸于
點(,0);
當λ≠1時,方程化為它表示圓,圓心的坐標為(),半徑為。
解:設MN切圓于N,則動點M組成的集合是P={M||MN|=λ|MQ|},式中常數(shù)λ>0.因為圓的半徑|ON|=1,
所以|MN|2=|MO|2-|ON|2=|MO|2-1.
設點M的坐標為(x,y),則
整理得(λ2-1)(x2+y2)-4λ2x+(1+4λ2)=0.
經檢驗,坐標適合這個方程的點都屬于集合P.故這個方程為所求的軌跡方程.
當λ=1時,方程化為x=,它表示一條直線,該直線與x軸垂直且交x軸于
點(,0);
當λ≠1時,方程化為它表示圓,圓心的坐標為(),半徑為。
點評:中檔題,求軌跡方程方法較多,本題利用直接法:直接法是將動點滿足的幾何條件或者等量關系,直接坐標化,列出等式化簡即得動點軌跡方程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知圓⊙O1與圓⊙O2外切于點P,過點P的直線交圓⊙O1于A,交圓⊙O2于B,AC為圓⊙O1直徑,BD與⊙O2相切于B,交AC延長線于D.

(Ⅰ)求證:
(Ⅱ)若BC、PD相交于點M,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,是圓的切線,切點為,點在圓上,,,則圓的面積為           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線與圓交于不同的兩點,是坐標原點,那么實數(shù)的取值范圍是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓在曲線的內部,則半徑的范圍是(  )
A.0<<B.0<<2C.0<<2D.0<<4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設A為圓上一動點,則A到直線的最大距離為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點在圓外,則實數(shù)的取值范圍是    。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量,設函數(shù)
(I)求的解析式,并求最小正周期;
(II)若函數(shù)的圖像是由函數(shù)的圖像向右平移個單位得到的,求的最大值及使取得最大值時的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖是圓的直徑,過、的兩條弦相交于點,若圓的半徑是,那么的值等于________________.

查看答案和解析>>

同步練習冊答案