某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)張三選擇方案甲抽獎(jiǎng),李四選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為X,若X≤3的概率為,求;
(2)若張三、李四兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問(wèn):他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?
(1);(2)詳見(jiàn)解析.
【解析】
試題分析:(1)記“這2人的累計(jì)得分X≤3”的事件為A,依題意,兩人累計(jì)得分的可能值為,故事件“”的對(duì)立事件為“”,所以所求事件的概率;(2)因?yàn)槊看纬楠?jiǎng)中獎(jiǎng)與否互不影響,且對(duì)方案甲或方案乙而言,中獎(jiǎng)的概率不變,故對(duì)于張三、李四兩人抽獎(jiǎng)可看成兩次獨(dú)立重復(fù)試驗(yàn),其中獎(jiǎng)次數(shù)服從二項(xiàng)分布,設(shè)張三、李四都選擇方案甲抽獎(jiǎng)中獎(jiǎng)次數(shù)為X1,都選擇方案乙抽獎(jiǎng)中獎(jiǎng)次數(shù)為X2,則X1~,X2~B,則累計(jì)得分的期望為E(2X1),E(3X2),從而比較大小即可.
(1)由已知得,張三中獎(jiǎng)的概率為,李四中獎(jiǎng)的概率為,且兩人中獎(jiǎng)與否互不影響.
記“這2人的累計(jì)得分X≤3”的事件為A,則事件A的對(duì)立事件為“X=5”,
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/GZSX/web/STSource/2014111719312825879478/SYS201411171931449937709305_DA/SYS201411171931449937709305_DA.010.png">×,所以=1-×=,所以 . 6分
(2)設(shè)張三、李四都選擇方案甲抽獎(jiǎng)中獎(jiǎng)次數(shù)為X1,都選擇方案乙抽獎(jiǎng)中獎(jiǎng)次數(shù)為X2,
則這兩人選擇方案甲抽獎(jiǎng)累計(jì)得分的數(shù)學(xué)期望為E(2X1),
選擇方案乙抽獎(jiǎng)累計(jì)得分的數(shù)學(xué)期望為E(3X2).
由已知可得,X1~,X2~B,
所以E(X1)=2×=,E(X2)=2×,
從而E(2X1)=2E(X1)=,E(3X2)=3E(X2)=6.
若,即,所以;
若,即,所以;
若,即,所以.
綜上所述:當(dāng)時(shí),他們都選擇方案甲進(jìn)行抽獎(jiǎng)時(shí),累計(jì)得分的數(shù)學(xué)期望較大;當(dāng)時(shí),他們都選擇方案乙進(jìn)行抽獎(jiǎng)時(shí),累計(jì)得分的數(shù)學(xué)期望較大;當(dāng)時(shí),他們都選擇方案甲或乙進(jìn)行抽獎(jiǎng)時(shí),累計(jì)得分的數(shù)學(xué)期望相等. 12分
考點(diǎn):1、對(duì)立事件;2、二項(xiàng)分布的期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的最小正周期為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省高三十三校聯(lián)考第二次考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
如圖,已知圓中兩條弦與相交于點(diǎn)是延長(zhǎng)線上一點(diǎn),且,若與圓相切,且,則= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省高三十三校第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
在中,若分別為的對(duì)邊,且,則有( )
A.a(chǎn)、c、b成等比數(shù)列 B.a(chǎn)、c、b成等差數(shù)列
C.a(chǎn)、b、c成等差數(shù)列 D.a(chǎn)、b、c成等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省高三十三校第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
等差數(shù)列{}的前規(guī)項(xiàng)和為Sn,S3=6,公差d=3,則a4=( )
A.8 B.9 C.11 D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省長(zhǎng)沙市高考二模理科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)點(diǎn)P是雙曲線與圓x2+y2=a2+b2在第一象限的交點(diǎn),其中F1,F2分別是雙曲線的左、右焦點(diǎn),且,則雙曲線的離心率為_(kāi)_____.[來(lái)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省長(zhǎng)沙市高考二模理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)變量x,y滿足約束條件,則z=x-3y的最大值為( )
A. B.4 C.3 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省長(zhǎng)沙市高考二模文科數(shù)學(xué)試卷(解析版) 題型:填空題
極坐標(biāo)方程為的圓與參數(shù)方程的直線的位置關(guān)系是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省益陽(yáng)市高三模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
某程序框圖如右圖所示,則輸出的結(jié)果S為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com