【題目】已知函數(shù),若曲線
在點(diǎn)
處的切線斜率為3,且
時,
有極值。
(1)求函數(shù)的解析式;
(2)求函數(shù)在
上的最值。
【答案】(1);(2)最大值13,最小值
【解析】試題分析:(1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)在點(diǎn)
處的切線斜率為3,得到
,利用條件當(dāng)
時,
有極值,得到
,聯(lián)立方程可求
,
;(2)利用函數(shù)的導(dǎo)數(shù)和最大值之間的關(guān)系,求函數(shù)的最大值和最小值即可.
試題解析:(1)∵,∴
,∵
在點(diǎn)
處的切線斜率為3,∴
,即
,∴
,①∵
時,
有極值.∴
,即
,∴
②
由①②解得,
.∴
.
(2)∵,∴由
,解得
或
,
當(dāng)在
上變化時,
和
的變化如下:
|
|
| 1 | ||||
+ | 0 | + | |||||
| 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 | 4 |
∴由表格可知當(dāng)時,函數(shù)
取得最小值
,在
時,函數(shù)取得極大值同時也是最大值
,故函數(shù)
在
上的最大值為13和最小值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=( )2(x>1)
(1)求f(x)的反函數(shù)及其定義域;
(2)若不等式(1﹣ )f﹣1(x)>a(a﹣
)對區(qū)間x∈[
,
]恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在
處的切線過點(diǎn)
,
.
(1)若,求函數(shù)
的極值點(diǎn);
(2)設(shè)是函數(shù)
的兩個極值點(diǎn),若
,證明:
.(提示
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= +log2017(2﹣x)的定義域為( )
A.(﹣2,1]
B.[1,2]
C.[﹣1,2)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=4.
(1)直線l1: 與圓O相交于A、B兩點(diǎn),求|AB|;
(2)如圖,設(shè)M(x1 , y1)、P(x2 , y2)是圓O上的兩個動點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對稱點(diǎn)為M1 , 點(diǎn)M關(guān)于x軸的對稱點(diǎn)為M2 , 如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問mn是否為定值?若是求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,
,則下列說法正確的是( )
A. 把上各點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線
B. 把上各點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線
C. 把曲線向右平移
個單位長度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的
,縱坐標(biāo)不變,得到曲線
D. 把曲線向右平移
個單位長度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的
,縱坐標(biāo)不變,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實數(shù)a的最大值為( )
A.2
B.
C.4
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=x2-x-15,且|x-a|<1,
(1)解不等式;
(2)求證:|f(x)-f(a)|<2(|a|+1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com