已知函數(shù)f(x)=
kx+1x2+c
(c>0且c≠1,k∈R)恰有一個極大值點和一個極小值點,其中一個是x=-c.
(Ⅰ)求函數(shù)f(x)的另一個極值點;
(Ⅱ)求函數(shù)f(x)的極大值M和極小值m,并求M-m≥1時k的取值范圍.
分析:(Ⅰ)原函數(shù)恰有一個極大值點和一個極小值點就是導(dǎo)函數(shù)恰有兩個不等實根,利用根與系數(shù)的關(guān)系求出另一根即可.
(Ⅱ)根據(jù)開口向上和向下兩種情況分別找到M-m,再解M-m≥1即可.
解答:解:(Ⅰ)f′(x)=
k(x2+c)-2x(kx+1)
(x2+c)2
=
-kx2-2x+ck
(x2+c)2
,
由題意知f'(-c)=0,即得c2k-2c-ck=0,(*)
∵c≠0,∴k≠0.
由f'(x)=0得-kx2-2x+ck=0,
由韋達定理知另一個極值點為x=1(或x=c-
2
k
).
(Ⅱ)由(*)式得k=
2
c-1
,即c=1+
2
k

當c>1時,k>0;當0<c<1時,k<-2.
(i)當k>0時,f(x)在(-∞,-c)和(1,+∞)內(nèi)是減函數(shù),在(-c,1)內(nèi)是增函數(shù).
M=f(1)=
k+1
c+1
=
k
2
>0
,m=f(-c)=
-kc+1
c2+c
=
-k2
2(k+2)
<0
,
M-m=
k
2
+
k2
2(k+2)
≥1
及k>0,解得k≥
2

(ii)當k<-2時,f(x)在(-∞,-c)和(1,+∞)內(nèi)是增函數(shù),在(-c,1)內(nèi)是減函數(shù).
M=f(-c)=
-k2
2(k+2)
>0
,m=f(1)=
k
2
<0
M-m=
-k2
2(k+2)
-
k
2
=1-
(k+1)2+1
k+2
≥1
恒成立.
綜上可知,所求k的取值范圍為(-∞,-2)∪[
2
,+∞)
點評:本題考查利用導(dǎo)函數(shù)來研究函數(shù)的極值以及對分類討論思想的考查.分類討論思想在數(shù)學(xué)中是非常重要的思想之一,所以希望能加強這方面的訓(xùn)練.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)函數(shù)f(x)=log3(x2-2x)的單調(diào)減區(qū)間為(-∞,1);
(2)已知P:|2x-3|>1,q:
1
x2+x-6
>0
,則p是q的必要不充分條件;
(3)命題“?x∈R,sinx≤
1
2
”的否定是:“?x∈R,sinx>”;
(4)已知函數(shù)f(x)=
3
sinωx+cosωx(ω>0)
,y=f(x)的圖象與直線y=2的兩個相鄰交點的距離等于π,則y=f(x)的單調(diào)遞增區(qū)間是[kπ-
π
3
,kπ+
π
6
],k∈z
;
(5)用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)時,從“k”到“k+1”的證明,左邊需增添的一個因式是2(2k+1);
其中所有正確的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
4x+2

(1)試求f(
1
n
)+f(
n-1
n
)(n∈N*)
的值;
(2)若數(shù)列{an}滿足an=f(0)+f(
1
n
)
+f(
2
n
)
+…+f(
n-1
n
)
+f(1)(n∈N*),求數(shù)列{an}的通項公式;
(3)若數(shù)列{bn}滿足bn=2n+1•an,Sn是數(shù)列{bn}前n項的和,是否存在正實數(shù)k,使不等式knSn>4bn對于一切的n∈N*恒成立?若存在指出k的取值范圍,并證明;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•黃浦區(qū)一模)已知函數(shù)f(x)=k+
x
,存在區(qū)間[a,b]⊆[0,+∞),使f(x)在[a,b]上的值域仍是[a,b],求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,g(x)=(3-k2)(logax+logxa),(其中a>1),設(shè)t=logax+logxa.
(Ⅰ)當x∈(1,a)∪(a,+∞)時,試將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
(Ⅱ)當x∈(1,+∞)時,若存在x0∈(1,+∞),使f(x0)>g(x0)成立,試求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉林省模擬題 題型:單選題

已知函數(shù)f(x)=+k定義域為D,且方程f(x)=x在D上有兩個不等實根,則k的取值范圍是
[     ]
A.-1<k≤
B.≤k<1
C.k>-1
D.k<1

查看答案和解析>>

同步練習冊答案