7、設(shè)拋物線y2=2px(p>0)上一點(diǎn)A(1,2)到點(diǎn)B(x0,0)的距離等于到直線x=-1的距離,則實(shí)數(shù)x0的值是
1
分析:把點(diǎn)A坐標(biāo)代入拋物線方程 求得 p,即能確定拋物線方程,準(zhǔn)線方程及焦點(diǎn)坐標(biāo),由條件,并結(jié)合拋物線的定義,可得B(x0,0)為拋物線 y2=4x 的焦點(diǎn),從而求得x0 的值.
解答:解:∵點(diǎn)A(1,2)在拋物線y2=2px(p>0)上,∴4=2p,p=2,
故拋物線方程為 y2=4x,準(zhǔn)線方程為 x=1.由點(diǎn)A(1,2)到點(diǎn)B(x0,0)的距離等于到直線x=-1的距離,
故點(diǎn)B(x0,0)為拋物線 y2=4x 的焦點(diǎn),故x0=1.
故答案為 1.
點(diǎn)評:本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,判斷點(diǎn)B(x0,0)為拋物線 y2=4x 的焦點(diǎn),是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且A,B兩點(diǎn)坐標(biāo)分別為(x1,y1)、(x2,y2),y1>0,y2<0,M是拋物線的準(zhǔn)線上的一點(diǎn),O是坐標(biāo)原點(diǎn).若直線MA,MF,MB的斜率分別記為:KMA=a,KMF=b,KMB=c,(如圖)
(I)若y1y2=-4,求拋物線的方程;
(II)當(dāng)b=2時,求a+c的值;
(III)如果取KMA=2,KMB=-
12
時,判定|∠AMF-∠BMF|和∠MFO的值大小關(guān)系.并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線y2=2px(p>0),弦AB過焦點(diǎn),△ABQ為阿基米德三角形,則△ABQ為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線與x軸的交點(diǎn)為Q,過Q點(diǎn)的直線l交拋物線于A,B兩點(diǎn).
(1)若直線l的斜率為
2
2
,求證:
FA
FB
=0
;
(2)設(shè)直線FA,F(xiàn)B的斜率分別為k1,k2,求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線y2=2px(p>0),弦AB過焦點(diǎn),△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為(  )
A、
p2
2
B、p2
C、2p2
D、4p2

查看答案和解析>>

同步練習(xí)冊答案