已知a、b是正數(shù),試比較
2
1
a
+
1
b
ab
的大。
考點(diǎn):基本不等式,不等式比較大小
專(zhuān)題:不等式的解法及應(yīng)用
分析:運(yùn)用基本不等式得到a,b倒數(shù)和的一個(gè)不等式關(guān)系,通過(guò)不等式的基本性質(zhì),對(duì)得到的不等式進(jìn)行變形,即可得到本題結(jié)論.
解答: 解:∵a、b是正數(shù),
1
a
+
1
b
≥2
1
a
1
b
=2
1
ab
,
1
1
a
+
1
b
ab
2

2
1
a
+
1
b
ab
點(diǎn)評(píng):本題考查的是基本不等式和不等式的基本性質(zhì),不等式變形時(shí)難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,1),
b
=(-2,3),若k
a
-
b
a
垂直,則實(shí)數(shù)k=(  )
A、
1
2
B、-
1
2
C、
5
2
D、-
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(α)=
cos(
π
2
+α)•cos(2π-α)•sin(-α+
2
)
sin(-π-α)•sin(
2
+α)

(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α-
2
)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿(mǎn)足方程x+2y=6,當(dāng)1≤x≤3時(shí),求
y-1
x-2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=axn+1+bxn(x>0),n為正整數(shù),a,b均為常數(shù),曲線(xiàn)y=f(x)在(1,f(1))處的切線(xiàn)方程為x+y-1=0.
(Ⅰ)求a、b值;
(Ⅱ)求函數(shù)f(x)的最大值;
(Ⅲ)證明:對(duì)任意的x∈(0,+∞)都有nf(x)<
1
e
.(e為自然對(duì)數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-4)(x-a)(常數(shù)a∈R),若f(x)在(-∞,-2]和[2,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)的和為Sn,且點(diǎn)(n+1,
1
Sn+n+3
)在函數(shù)y=
1
2x+1
的圖象上,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:sin(π+θ)=-
1
3
,求值:
cos(3π+θ)
cos(-θ)[cos(π-θ)-1]
+
cos(θ-2π)
cos2θsin
3
2
π+cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)sin20°cos40°+cos20°sin40°=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案