(本小題滿分13分)
為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標有面值的球的袋中一次性隨機摸出2個球,球上所標的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標的面值為50元,其余3個均為10元,求
①顧客所獲的獎勵額為60元的概率
②顧客所獲的獎勵額的分布列及數(shù)學期望;
(2)商場對獎勵總額的預算是60000元,并規(guī)定袋中的4個球只能由標有面值10元和50元的兩種球組成,或標有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設計,并說明理由.
(1)  ,參考解析;(2)參考解析

試題分析:(1)由袋中所裝的4個球中有1個所標的面值為50元,其余3個均為10元,又規(guī)定每位顧客從
一個裝有4個標有面值的球的袋中一次性隨機摸出2個球,球上所標的面值之和為該顧客所獲的獎勵額..由獲得60元的事件數(shù)除以總的事件數(shù)即可. 顧客獲得獎勵有兩種情況20元,60元.分別計算出他們的概率,再利用數(shù)學期望的公式即可得結論.
(2) 根據(jù)商場的預算,每個顧客的平均獎勵為60元.根據(jù)題意有兩種獲獎勵的情況,確定符合題意的方案,分別僅有一種.再分別計算出兩種方案相應的概率以及求出數(shù)學期望和方差.即可得到結論.
試題解析:(1)設顧客所獲的獎勵為X. ①依題意,得.即顧客所獲得的獎勵額為60元的概率為.
②依題意,得X的所有可能取值為20,60. .即X的分布列為
X
20
60
P
0.5
0.5
所以顧客所獲得的獎勵額的期望為(元).
(2)根據(jù)商場的預算,每個顧客的平均獎勵為60元.所以先尋找期望為60元的可能方案.對于面值由10元和50元組成的情況,如果選擇(10,10,10,50)的方案,因為60元是面值之和的最大值,所以期望不可能為60元;如果選擇(50,50,50,10)的方案,因為60元是面值之和的最小值,所以數(shù)學期望也不可能為60元,因此可能的方案是(10,10,50,50),記為方案1.對于面值由20元和40元組成的情況,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),記為方案2.以下是對兩個方案的分析:對于方案1,即方案(10,10,50,50),設顧客所獲的獎勵為,則的分布列為

20
60
100




的期望為,的方差為.
對于方案2,即方案(20,20,40,40),設顧客所獲的獎勵為,則的分布列為

40
60
80




的期望為, 的方差為.由于兩種方案的獎勵額都符合要求,但方案2獎勵的方差比方案1的小,所以應該選擇方案2.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數(shù)字,,,這三張卡片除標記的數(shù)字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,不完全相同”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設隨機變量X的分布為P(x=i)=a-(
1
3
i,i=1,2,3則a的值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將號碼分別為1、2、…、9的九個小球放入一個袋中,這些小球僅號碼不同,其余完全相同,甲從袋中摸出一個球.其號碼為a,放回后,乙從此袋中再摸出一個球,其號碼為b,則使不等式a-2b+10>0成立的事件發(fā)生的概率等于________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

從1,2,3,6這四個數(shù)中一次隨機地取2個數(shù),則所取兩個數(shù)的乘積為6的概率為           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某車間共有6名工人,他們某日加工零件個數(shù)的莖葉圖如上圖所示,其中莖為十位數(shù),葉為個位數(shù),日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.從該車間6名工人中,任取2人,則恰有1名優(yōu)秀工人的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

[2014·浙江模擬]從裝有3個紅球、2個白球的袋中任取3個球,則所取的3個球中至少有1個白球的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分9分)一個袋子中有3個紅球和2個黃球,5個球除顏色外完全相同,甲、乙兩人先后不放回地從中各取1個球.規(guī)定:若兩人取得的球的顏色相同則甲獲勝,否則乙獲勝.
(1) 求兩個人都取到黃球的概率;
(2) 計算甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某中學有A、B、C、D、E五名同學在高三“一檢”中的名次依次為1,2,3,4,5名,“二檢”中的前5名依然是這五名同學.
(1)求恰好有兩名同學排名不變的概率;
(2)如果設同學排名不變的同學人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案