A. | $-\frac{15}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{15}{4}$ | D. | $\frac{3}{4}$ |
分析 由題意可得三角形是以角A為直角的直角三角形,解直角三角形求出相應(yīng)的邊和角,代入數(shù)量積公式得答案.
解答 解:三角形ABC外接圓O的半徑為1(O為圓心),且$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴O為BC的中點(diǎn),故△ABC是直角三角形,∠A為直角.
又|$\overrightarrow{OA}$|=2|$\overrightarrow{AB}$|,
∴|$\overrightarrow{AB}$|=$\frac{1}{2}$,|$\overrightarrow{BC}$|=2,
∴|$\overrightarrow{AC}$|=$\frac{\sqrt{15}}{2}$,
∴cosC=$\frac{A{C}^{2}+O{C}^{2}-O{A}^{2}}{2•AC•OC}$=$\frac{\frac{15}{4}}{2×\frac{\sqrt{15}}{2}×1}$=$\frac{\sqrt{15}}{2}$,
∴$\overrightarrow{CA}$•$\overrightarrow{BC}$=-$\overrightarrow{AC}$•$\overrightarrow{BC}$=-$\frac{\sqrt{15}}{2}$×2×$\frac{\sqrt{15}}{2}$=-$\frac{15}{4}$
故選:A.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查直角三角形中的邊角關(guān)系,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若及格分不低于70分,則A,B,C都及格 | |
B. | 若A,B,C都及格,則及格分不低于70分 | |
C. | 若A,B,C至少有1人及格,則及格分不低于70分 | |
D. | 若A,B,C至少有1人及格,則 及格分不高70于分 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | $\{x|\frac{1}{2}<x<1,x∈R\}$ | C. | {x|-2<x<2,x∈R} | D. | {x|-2<x<1,x∈R} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com