設(shè)為實數(shù),且是實數(shù),則=

A.                         B.1                           C.                       D.2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f'(x)滿足0<f'(x)<1.”
(1)判斷函數(shù)f(x)=
x
3
+
cosx
4
是否是集合M中的元素,并說明理由;
(2)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域為D,則對于任意[m,n]30D,都存在-15P[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,試用這一性質(zhì)證明:方程f(x)-x=0只有一個實數(shù)根;
(3)設(shè)
1
5
是方程f(x)-x=0的實數(shù)根,求證:對于f(x)定義域中任意的x2,x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時,|f(x3)-f(x2)|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c為實數(shù),且a≠0),F(xiàn)(x)=
f(x),x>0
-f(x),x<0

(1)若f(-1)=0,曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))處的切線垂直于y軸,求f(x)的表達(dá)式;
(2)在(Ⅰ)在條件下,當(dāng)x∈[-1,1]時,g(x)=kx-f(x)是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)為偶函數(shù),證明F(m)+F(n)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),且a≠0),x∈R,H(x)=
f(x)
0
(x>0)
(x=0)
-f(x)(x<0)

(1)若f(-1)=0,且方程ax2+bx+1=0(a≠0)有唯一實根,求H(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k取值范圍;
(3)設(shè)a=1且b=0,解關(guān)于m的不等式:H(m2+2)+H(3m)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實數(shù),且是實數(shù),則a=       

A.                         B.1                            C.                         D.2

查看答案和解析>>

同步練習(xí)冊答案