17.從某山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中隨機抽取5頭,測量豬的體長x(cm)和體重y(kg),得如下測量數(shù)據(jù):
豬編號12345
x169181166185180
y9510097103101
(1)當(dāng)且僅當(dāng)x,y滿足:x≥180且y≥100時,該豬為優(yōu)等品,用上述樣本數(shù)據(jù)估計山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中優(yōu)等品的數(shù)量;
(2)從抽取的上述5頭豬中,隨機抽取2頭中優(yōu)等品數(shù)x的分布列及其數(shù)學(xué)期望.

分析 (1)由已知隨機抽取的5頭豬中,優(yōu)等品有3頭,由此能估計山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中優(yōu)等品的數(shù)量.
(2)抽取的5頭豬中,優(yōu)等品有3頭,非優(yōu)等品有2頭,隨機抽取2頭中優(yōu)等品數(shù)X的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.

解答 解:(1)由已知隨機抽取的5頭豬中,優(yōu)等品有3頭,
∴估計山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中優(yōu)等品的數(shù)量為:
3500×$\frac{3}{5}$=2100(頭).
(2)∵抽取的5頭豬中,優(yōu)等品有3頭,非優(yōu)等品有2頭,
∴隨機抽取2頭中優(yōu)等品數(shù)X的可能取值為0,1,2,
P(X=0)=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}$=$\frac{1}{10}$,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{3}^{1}}{{C}_{5}^{2}}$=$\frac{6}{10}$,
P(X=2)=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{3}{10}$,
∴X的分布列為:

 X 0 1 2
 P $\frac{1}{10}$ $\frac{6}{10}$ $\frac{3}{10}$
EX=$0×\frac{1}{10}+1×\frac{6}{10}+2×\frac{3}{10}$=$\frac{6}{5}$.

點評 本題考查概率的應(yīng)用,考查離散型隨機變量的分布列、數(shù)學(xué)期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知3,a-1,12成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-3|.
(Ⅰ)若不等式f(x-1)+f(x)<a的解集為空集,求實數(shù)a的取值范圍;
(Ⅱ)若|a|<1,|b|<3,且a≠0,判斷$\frac{f(ab)}{|a|}$與$f(\frac{a})$的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.A,B兩組各有7位病人,他們服用某種藥物后的康復(fù)時間(單位:天)記錄如下:
A組:10,11,12,13,14,15,16,;
B組:12,13,15,16,17,14,a.
假設(shè)所有病人的康復(fù)時間相互獨立,從A,B兩組隨機各選1人,A組選出的人記為甲,B組選出的人記為乙.
(1)如果a=11,求B組的7位病人康復(fù)時間的平均數(shù)和方差;
(2)如果a=14,設(shè)甲與乙的康復(fù)時間都低于15,記甲的康復(fù)時間與乙的康復(fù)時間的差的絕對值X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知曲線x2+y2=2(x≥0,y≥0)和x+y=$\sqrt{2}$圍成的封閉圖形為Г,則圖形Г繞y軸旋轉(zhuǎn)一周后所形成幾何體的表面積為(  )
A.$\frac{2\sqrt{2}}{3}$B.(8+4$\sqrt{2}$)πC.(8+2$\sqrt{2}$)πD.(4+2$\sqrt{2}$)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.由x=0,y=x3,y=1所圍成的平面圖形繞y軸旋轉(zhuǎn)一周,所得幾何體體積是$\frac{3π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.橢圓E中心在原點,以拋物線y2=4x的焦點為其一個焦點,且E經(jīng)點P($\frac{4}{3}$,$\frac{1}{3}$),則橢圓短軸長為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.甲、乙兩個乒乓球選手進行比賽,他們的水平相當(dāng),規(guī)定“七局四勝”,即先贏四局者勝,若已知甲先贏了前兩局,求:
(1)乙取勝的概率;
(2)比賽打滿七局的概率;
(3)設(shè)比賽局數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如果函數(shù)f(x)=$\frac{1}{2}$(m-2)x2+(n-8)x+1(m≥0,n≥0)在區(qū)間[1,2]上單調(diào)遞減,則3m+2n的最大值為22.

查看答案和解析>>

同步練習(xí)冊答案