5.求證:已知直線l與三條平行線a、b、c都相交(如圖),求證:l與a、b、c共面.

分析 設(shè)a∩l=A,b∩l=B,c∩l=C,由a∥b,得過(guò)a、b可以確定一個(gè)平面α.由b∥c,得過(guò)b、c可以確定一個(gè)平面β,由已知推導(dǎo)出α與β重合,從而能證明a、b、c、l共面.

解答 證明:如圖,設(shè)a∩l=A,b∩l=B,c∩l=C,
∵a∥b,∴過(guò)a、b可以確定一個(gè)平面α.
∵A∈a,B∈b,a、b?α,
∴A∈α,B∈α,∴AB?α,即l?α.
又∵b∥c,
∴過(guò)b、c可以確定一個(gè)平面β,同理可證l?β.
∵α、β都過(guò)相交直線b、l,
∴α與β重合,
∴a、b、c、l共面.

點(diǎn)評(píng) 本題考查四線共面的證明,是基礎(chǔ)題.共面問(wèn)題的證明常有下列方法:1.先作一個(gè)平面,再證明有關(guān)的點(diǎn)或線在這個(gè)平面內(nèi);2.先過(guò)某些點(diǎn)或線作多個(gè)平面,再證明這些平面重合;3.用反證法.本題采用方法2證明較好.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在平面直角坐標(biāo)系xoy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C1的極坐標(biāo)方程為ρ=4cosθ,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)).
(1)若C1與C2只有一個(gè)公共點(diǎn),求實(shí)數(shù)m的值;
(2)若θ=$\frac{π}{3}$與C1交于點(diǎn)A(異于極點(diǎn)),θ=$\frac{5π}{6}({ρ∈R})$與C1交于點(diǎn)B(異于極點(diǎn)),與C2交于點(diǎn)C,若△ABC的面積為3$\sqrt{3}$,求實(shí)數(shù)m(m<0)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)f(x)=x-$\frac{a-1}{x}$-alnx,a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)$(\frac{1}{2},\frac{1}{2}+ln2)$處的切線方程;
(2)當(dāng)a>1時(shí),若x=1是函數(shù)f(x)的極大值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知a∈R,直線l1:(2a+1)x+2y-a+2=0與直線l2:2x-3ay-3a-5=0垂直.
(1)求a的值;
(2)求以l1,l2的交點(diǎn)為圓心,且與直線3x-4y+9=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某政府機(jī)關(guān)有在編人員160人,其中有一般干部112人,副處級(jí)以上干部16人,后勤工人32人,為了了解政府機(jī)構(gòu)改革意見(jiàn),要從中抽取一個(gè)容量為20的樣本,試確定用何種方法抽取樣本,并具體實(shí)施操作.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知數(shù)列{an}滿足a1=$\frac{1}{3}$,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N*),則$\frac{{a}_{3}+{a}_{1005}}{{a}_{3}{a}_{1005}}$=(  )
A.2015B.2016C.2017D.2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某校從高一年級(jí)學(xué)生中隨機(jī)抽取100名學(xué)生,將他們期中考試的數(shù)學(xué)成績(jī)(均為整數(shù))分成六段:[40,50),[50,60),…[90,100),后得到頻率分布直方圖(如圖所示)
(1)求分?jǐn)?shù)在[70,80)中的人數(shù);
(2)若用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5人,該5人中成績(jī)?cè)赱40,50)的有幾人;
(3)在(2)中抽取的5人中,隨機(jī)抽取2人,求分?jǐn)?shù)在[40,50)和[50,60)各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系xOy的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,圓C的直角坐標(biāo)系方程為x2+y2+2x-2y=0,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+t}\\{y=t}\end{array}\right.$(t為參數(shù)),射線OM的極坐標(biāo)方程為θ=$\frac{3π}{4}$
(Ⅰ)求圓C和直線l的極坐標(biāo)方程
(Ⅱ)已知射線OM與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.直線3x-4y-12=0與兩條坐標(biāo)軸分別交于點(diǎn)A,B,O為坐標(biāo)原點(diǎn),則△ABO的面積等于6.

查看答案和解析>>

同步練習(xí)冊(cè)答案