已知數(shù)列{an}的前n項和為Sn,a1=1,且3an+1+2Sn=3(n為正整數(shù))
(Ⅰ)求出數(shù)列{an}的通項公式;
(Ⅱ)若對任意正整數(shù)n,k≤Sn恒成立,求實數(shù)k的最大值.

解:(Ⅰ)∵3an+1+2Sn,①
∴當n≥2時,3an+2Sn-1=3.②
由 ①-②,得3an+1-3an+2an=0.
,n≥2.
又∵a1=1,3a2+2a1=3,解得
∴數(shù)列{an}是首項為1,公比為的等比數(shù)列.
,(n為正整數(shù)).…(7分)
(Ⅱ)∵數(shù)列{an}是首項為1,公比為的等比數(shù)列,
=,
由題意可知,對于任意的正整數(shù)n,恒有k≤
∵數(shù)列{1-}單調遞增,當n=1時,數(shù)列中的最小項為,即
∴必有k≤1,即實數(shù)k的最大值為1.…(14分)
分析:(Ⅰ)由3an+1+2Sn,知3an+2Sn-1=3.故3an+1-3an+2an=0.由此能求出數(shù)列{an}的通項公式.
(Ⅱ)由(Ⅰ)知=,由題意可知,對于任意的正整數(shù)n,恒有k≤,由此能求出實數(shù)k的最大值.
點評:本題考查數(shù)列的通項公式的求法和等比數(shù)列前n項和公式的應用,解題時要認真審題,仔細解答,注意數(shù)列與不等式的綜合應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案