對(duì)于四面體ABCD,給出下列四個(gè)命題
①若AB=AC,BD=CD,則BC⊥AD;
②若AB=CD,AC=BD,則BC⊥AD;
③若AB⊥AC,BD⊥CD,則BC⊥AD;
④若AB⊥CD,BD⊥AC,則BC⊥AD.
其中真命題的序號(hào)是     .(寫(xiě)出所有真命題的序號(hào))
【答案】分析:證明線線垂直一般采用線面垂直來(lái)證線線垂直.①的證明可轉(zhuǎn)借化證明BC⊥面AHD.④的證明可轉(zhuǎn)化為證垂心,然后再證明BC⊥面AED來(lái)證明BC⊥AD.②③條件下不能求出兩線的夾角,也無(wú)法保證一個(gè)線垂直于另一個(gè)線所在的平面,故不對(duì).
解答:證明:如圖
對(duì)于①取BC的中點(diǎn)H,連接AH與DH,可證得BC⊥面AHD,進(jìn)而可得BC⊥AD,故①對(duì);
對(duì)于②條件不足備,證明不出結(jié)論;
對(duì)于③條件不足備,證明不出結(jié)論;
對(duì)于④作AE⊥面BCD于E,連接BE可得BE⊥CD,同理可得CE⊥BD,證得E 是垂心,則可得得出DE⊥BC,進(jìn)而可證得BC⊥面AED,即可證出BC⊥AD.
綜上知①④正確,故應(yīng)填①④.
點(diǎn)評(píng):本題在判斷時(shí)有一定的難度,需要構(gòu)造相關(guān)的圖形,在立體幾何中,構(gòu)造法是一個(gè)常 用的方法,本題用其來(lái)將線線證明轉(zhuǎn)化線面證明,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、對(duì)于四面體ABCD,下列命題正確的序號(hào)是
①④⑤

①相對(duì)棱AB與CD所在的直線異面;
②由頂點(diǎn)A作四面體的高,其垂足是△BCD的三條高線的交點(diǎn);
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對(duì)棱中點(diǎn)的連線,所得的三條線段相交于一點(diǎn);
⑤最長(zhǎng)棱必有某個(gè)端點(diǎn),由它引出的另兩條棱的長(zhǎng)度之和大于最長(zhǎng)棱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、對(duì)于四面體ABCD,下列命題正確的是
①④⑤
.(寫(xiě)出所有正確命題的編號(hào)).
①相對(duì)棱AB與CD所在的直線是異面直線;
②由頂點(diǎn)A作四面體的高,其垂足是△BCD三條高線的交點(diǎn);
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高的垂足重合;
④任何三個(gè)面的面積之和都大于第四個(gè)面的面積;
⑤分別作三組相對(duì)棱中點(diǎn)的連線,所得的三條線段相交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、對(duì)于四面體ABCD,有如下命題
①棱AB與CD所在的直線異面;
②過(guò)點(diǎn)A作四面體ABCD的高,其垂足是△BCD的三條高線的交點(diǎn);
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對(duì)棱的中點(diǎn)連線,所得的三條線段相交于一點(diǎn),
其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、對(duì)于四面體ABCD,下列命題正確的是
①④
.(寫(xiě)出所有正確命題的編號(hào))
①相對(duì)棱AB與CD所在的直線異面
②由頂點(diǎn)A作四面體的高,其垂足必是△BCD的三條高線的交點(diǎn)
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線必異面
④分別作三組相對(duì)棱中點(diǎn)的連線,所得的三條線段相交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下五個(gè)命題中,正確命題的個(gè)數(shù)是
3
3

①不共面的四點(diǎn)中,其中任意三點(diǎn)不共線;
②若a,b,c為空間中不重合的三條直線,若a⊥c,b⊥c,則a∥b;
③對(duì)于四面體ABCD,任何三個(gè)面的面積之和都大于第四個(gè)面的面積;
④對(duì)于四面體ABCD,相對(duì)棱AB 與CD 所在的直線是異面直線;
⑤各個(gè)面都是三角形的幾何體是三棱錐.

查看答案和解析>>

同步練習(xí)冊(cè)答案