(2010•邯鄲二模)已知集合M⊆{1,2,3,4},且M∩{1,2}={1,2},則集合M的個數(shù)是( 。
分析:根據(jù)題設條件,利用交集的性質,由列舉法能夠寫出滿足條件的集合M,由此能夠求出結果.
解答:解:∵集合M⊆{1,2,3,4},
且M∩{1,2}={1,2},
∴滿足條件的集合M為{1,2},{1,2,3},{1,2,4},{1,2,3,4},
共有4個,
故選D.
點評:本題考查集合的交集及其運算,是基礎題.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•邯鄲二模)已知向量
a
=(
1
2
cosx,
3
sinx),
b
=(4cosx,2cosx)
,函數(shù)f(x)=
a
b
+k(k∈R)

(Ⅰ)求f(x)的單調增區(qū)間;
(Ⅱ)若x∈[0,π]時,f(x)的最大值為4,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•邯鄲二模)設二元一次不等式組
x≥1
y≥4
x+y-6≤0
所表示的平面區(qū)域為M,使函數(shù)y=ax(a>0,a≠1)的圖象過區(qū)域M的a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•邯鄲二模)如果函數(shù)y=x2+bx+c對任意的實數(shù)x,都有f(1+x)=f(-x),那么( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•邯鄲二模)設數(shù)列{an} 為等差數(shù)列,且a5=14,a7=20,數(shù)列{bn} 的前n項和為Sn=1-(
13
)
n
(n∈N*),
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=an•bn,n=1,2,3,…,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案