已知曲線y=x4+ax2+1在點(diǎn)(-1,a+2)處切線的斜率為8,a=
A.9
B.6
C.-9
D.-6
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:河北省鄭口中學(xué)2011屆高三摸底考試數(shù)學(xué)試題 題型:044
已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減.
(1)求a的值;
(2)若斜率為24的直線是曲線y=f(x)的切線,求此直線方程;
(3)是否存在實數(shù)b,使得函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有2個不
同交點(diǎn)?若存在,求出實數(shù)b的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省余姚中學(xué)2011屆高三第一次質(zhì)量檢測理科數(shù)學(xué)試題 題型:044
已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減.
(1)求a的值;
(2)若斜率為24的直線是曲線y=f(x)的切線,求此直線方程;
(3)是否存在實數(shù)b,使得函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有2個不同交點(diǎn)?若存在,求出實數(shù)b的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省浙大附中2012屆高三上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044
已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減.
(1)求a的值;
(2)若斜率為24的直線是曲線y=f(x)的切線,求此直線方程;
(3)是否存在實數(shù)b,使得函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有2個不同交點(diǎn)?若存在,求出實數(shù)b的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)當(dāng)a=1,b=2時,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程.
(2)設(shè)x1,x2是f′(x)=0的兩個根,x3是f(x)的一個零點(diǎn),且x3≠x1,x3≠x2.
證明:存在實數(shù)x4,使得x1,x2,x3,x4按某種順序排列后成等差數(shù)列,并求x4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com