(2006•朝陽區(qū)三模)若復數(shù)z滿足z(1-2i)=3+4i,則z等于( 。
分析:把給出的等式的兩邊同時乘以
1
1-2i
,然后直接利用復數(shù)的除法運算求解.
解答:解:由z(1-2i)=3+4i,得z=
3+4i
1-2i
=
(3+4i)(1+2i)
(1-2i)(1+2i)
=
-5+10i
5
=-1+2i

故選A.
點評:本題考查了復數(shù)代數(shù)形式的乘除運算,復數(shù)的除法,采用分子分母同時乘以分母的共軛復數(shù),是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2006•朝陽區(qū)三模)甲、乙兩人參加一項智力測試.已知在備選的10道題中,甲能答對其中的6道題,乙能答對其中的8道題.規(guī)定每位參賽者都從備選題中隨機抽出3道題進行測試,至少答對2道題才算通過.
(Ⅰ)求甲答對試題數(shù)ξ的概率分布及數(shù)學期望;
(Ⅱ)求甲、乙兩人至少有一人通過測試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•朝陽區(qū)三模)函數(shù)y=f(x)的圖象如圖所示,則y=f(x)的導函數(shù)y=f′(x)的圖象可以是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•朝陽區(qū)三模)已知f(x)是定義在R上的奇函數(shù),且當x<0時,f(x)=2x,則f-1(-
14
)
的值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•朝陽區(qū)三模)在等比數(shù)列{an}中,若a9=1,則有等式a1a2…an=a1a2…a17-n,(n<17,n∈N*)成立.類比上述性質(zhì),相應(yīng)的在等差數(shù)列{bn}中,若b9=0,則有等式
b1+b2+…+bn=b1+b2+…+b17-n,(n<17,n∈N*)
b1+b2+…+bn=b1+b2+…+b17-n,(n<17,n∈N*)
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•朝陽區(qū)三模)已知:在正三棱柱ABC-A1B1C1中,AB=a,AA1=2a,D、E分別是側(cè)棱BB1和AC1的中點.
(Ⅰ)求異面直線AD與A1C1所成角的余弦值;
(Ⅱ)求證:ED⊥平面ACC1A1
(Ⅲ)求平面ADC1與平面ABC所成二面角的大。

查看答案和解析>>

同步練習冊答案