19.二次函數(shù)y=x2-2x-1的對稱軸是x=1.

分析 考察二次函數(shù)基本性質(zhì)的應(yīng)用,對稱軸為$x=-\frac{2a}$.

解答 解:二次函數(shù)y=x2-2x-1中a=1,b=-2;
∴其對稱軸$x=-\frac{2a}=-\frac{-2}{2×1}=1$.
故答案為:x=1.

點評 本題考查二次函數(shù)基本性質(zhì)中的對稱軸公式;也可用配方法解決.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列四個命題:
①樣本相關(guān)系數(shù)r越大,線性相關(guān)關(guān)系越強;
②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;
③設(shè)m,n是不同的直線,α,β是不同的平面,若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β;
④若直線m不垂直于平面α,則直線m不可能垂直于平面α內(nèi)的無數(shù)條直線.
其中正確命題的序號為(  )
A.、①②③B.①③C.①②④D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若等比數(shù)列{an}滿足a1+a3=5,且公比q=2,則a3+a5=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=5,且$\overrightarrow{a}$,$\overrightarrow$不共線,求當k為何值時,向量$\overrightarrow{a}$+k$\overrightarrow$與$\overrightarrow{a}$-k$\overrightarrow$互相垂直?
(2)已知|$\overrightarrow{a}$|=1,$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$)=$\frac{1}{2}$,求$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知F為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點,A、B分別為橢圓C的左、上頂點,若BF的垂直平分線恰好過點A,則橢圓C的離心率為$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.正六棱柱ABCDEF-A1B1C1D1E1F1的底面邊長為$\sqrt{3}$,側(cè)棱長為1,則動點從A沿表面移動到點D1時的最短的路程是$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在x≤0的條件下,求函數(shù)y=$\sqrt{8+2x-{x}^{2}}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,B(-c,0),C(c,0),AH⊥BC,垂足為H,且$\overrightarrow{BH}$=3$\overrightarrow{HC}$.又$\overrightarrow{AD}$=-4$\overrightarrow{DB}$,且A、D同在B、C為焦點的橢圓上,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)集合A={1,2,m2-m}.B={$\sqrt{{m}^{2}}$,1},C={x|x>lg$\frac{1-m}{{m}^{2}+1}$},B⊆A.
(1)求實數(shù)m的值;
(2)求A∩C.

查看答案和解析>>

同步練習冊答案