【題目】設點P在曲線 上,點Q在曲線y=ln(2x)上,則|PQ|最小值為( )
A.1﹣ln2
B.
C.1+ln2
D.
【答案】B
【解析】解:∵函數(shù) 與函數(shù)y=ln(2x)互為反函數(shù),圖象關于y=x對稱,
函數(shù) 上的點 到直線y=x的距離為 ,
設g(x)= (x>0),則 ,
由 ≥0可得x≥ln2,
由 <0可得0<x<ln2,
∴函數(shù)g(x)在(0,ln2)單調遞減,在[ln2,+∞)單調遞增,
∴當x=ln2時,函數(shù)g(x)min=1﹣ln2,
,
由圖象關于y=x對稱得:|PQ|最小值為 .
故選B.
由于函數(shù) 與函數(shù)y=ln(2x)互為反函數(shù),圖象關于y=x對稱,要求|PQ|的最小值,只要求出函數(shù) 上的點 到直線y=x的距離為 的最小值,
設g(x)= ,利用導數(shù)可求函數(shù)g(x)的單調性,進而可求g(x)的最小值,即可求.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.
(1)求圓的直角坐標方程及弦的長;
(2)動點在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線在平面直角坐標系下的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系.
(1)求曲線的普通方程及極坐標方程;
(2)直線的極坐標方程是,射線: 與曲線交于點與直線交于點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當x∈[0,2)時,f(x)= ,若x∈[﹣4,﹣2)時,f(x)≥ 恒成立,則實數(shù)t的取值范圍是( )
A.[﹣2,0)∪(0,1)
B.[﹣2,0)∪[1,+∞)
C.[﹣2,1]
D.(﹣∞,﹣2]∪(0,1]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(Ⅰ)當每輛車的月租金定為3600元時,能租出多少輛車?
(Ⅱ)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,平面平面,底面為梯形, ,且與均為正三角形, 為的重心.
(1)求證: 平面;
(2)求平面與平面所成銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f( )= .
(Ⅰ)求f(x)的解析式,
(Ⅱ)用函數(shù)單調性的定義證明f(x)在(﹣1,1)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程: (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,且取相同的長度單位建立極坐標系,曲線C的極坐標方程為ρ2= .
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)設曲線C與直線l交于A,B兩點,若P(1,2),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 的值域為集合A,關于x的不等式 的解集為B,集合 ,集合D={x|m+1≤x<2m﹣1}(m>0)
(1)若A∪B=B,求實數(shù)a的取值范圍;
(2)若DC,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com