【題目】近兩年來,以《中國詩詞大會》為代表的中國文化類電視節(jié)目帶動(dòng)了一股中國文化熱潮.某臺舉辦闖關(guān)答題比賽,共分兩輪,每輪共有4類題型,選手從前往后逐類回答,若中途回答錯(cuò)誤,立馬淘汰,若全部回答正確,就能獲得一枚復(fù)活幣并進(jìn)行下一輪答題,兩輪都通過就可以獲得最終獎(jiǎng)金.選手在第一輪闖關(guān)獲得的復(fù)活幣,系統(tǒng)會在下一輪答題中自動(dòng)使用,即下一輪重新進(jìn)行闖關(guān)答題時(shí),在某一類題型中回答錯(cuò)誤,自動(dòng)復(fù)活一次,視為答對該類題型.若某選手每輪的4類題型的通過率均分別為、、、,則該選手進(jìn)入第二輪答題的概率為_________;該選手最終獲得獎(jiǎng)金的概率為_________.

【答案】; .

【解析】

選手要進(jìn)入第二輪答題,則第一輪要全部回答正確,根據(jù)相互獨(dú)立同時(shí)發(fā)生的概率,即可求出其概率;該選手要獲得獎(jiǎng)金,須兩輪都要過關(guān),獲得獎(jiǎng)金的概率為兩輪過關(guān)的概率乘積,第二輪通過,答題中可能全部答對四道題,或答錯(cuò)其中一道題,分別求出概率相加,即可得出結(jié)論.

選手進(jìn)入第二輪答題,則第一輪中答題全部正確,

概率為

第二輪通過的概率為

,

該選手最終獲得獎(jiǎng)金的概率為.

故答案為:;.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C(ab0)過點(diǎn),離心率為.

1)求橢圓C的方程;

2)若斜率為的直線l與橢圓C交于AB兩點(diǎn),試探究是否為定值?若是定值,則求出此定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長度,曲線的極坐標(biāo)方程為.

(1)把曲線的方程化為普通方程,的方程化為直角坐標(biāo)方程

(2)若曲線,相交于兩點(diǎn),的中點(diǎn)為,過點(diǎn)作曲線的垂線交曲線兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某一段海底光纜出現(xiàn)故障,需派人潛到海底進(jìn)行維修,現(xiàn)在一共有甲、乙、丙三個(gè)人可以潛水維修,由于潛水時(shí)間有限,每次只能派出一個(gè)人,且每個(gè)人只派一次,如果前一個(gè)人在一定時(shí)間內(nèi)能修好則維修結(jié)束,不能修好則換下一個(gè)人.已知甲、乙、丙在一定時(shí)間內(nèi)能修好光纜的概率分別為,且各人能否修好相互獨(dú)立.

1)若按照丙、乙、甲的順序派出維修,設(shè)所需派出人員的數(shù)目為X,求X的分布列和數(shù)學(xué)期望;

2)假設(shè)三人被派出的不同順序是等可能出現(xiàn)的,現(xiàn)已知丙在乙的下一個(gè)被派出,求光纜被丙修好的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象與直線ya恰有三個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,則下列命題正確的是(

A.當(dāng)時(shí),

B.函數(shù)3個(gè)零點(diǎn)

C.的解集為

D.,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放40年,我國經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進(jìn)行一次全市駕駛員交通安全意識調(diào)查.隨機(jī)抽取男女駕駛員各50人,進(jìn)行問卷測評,所得分?jǐn)?shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強(qiáng).

安全意識強(qiáng)

安全意識不強(qiáng)

合計(jì)

男性

女性

合計(jì)

(Ⅰ)求的值,并估計(jì)該城市駕駛員交通安全意識強(qiáng)的概率;

(Ⅱ)已知交通安全意識強(qiáng)的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識與性別有關(guān);

(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強(qiáng)的駕駛員中隨機(jī)抽取2人,求抽到的女性人數(shù)的分布列及期望.

附:,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)的坐標(biāo)為,圓的方程為,動(dòng)點(diǎn)在圓上運(yùn)動(dòng),點(diǎn)延長線上一點(diǎn),且

1)求點(diǎn)的軌跡方程.

2)過點(diǎn)作圓的兩條切線, ,分別與圓相切于點(diǎn), ,求直線的方程,并判斷直線與點(diǎn)所在曲線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將要舉行校園歌手大賽,現(xiàn)有43女參加,需要安排他們的出場順序.(結(jié)果用數(shù)字作答

1)如果3個(gè)女生都不相鄰,那么有多少種不同的出場順序?

2)如果3位女生都相鄰,且男生甲不在第一個(gè)出場,那么有多少種不同的出場順序?

查看答案和解析>>

同步練習(xí)冊答案