如圖,在平面直角坐標(biāo)系xOy中,拋物線W的頂點(diǎn)在原點(diǎn),其焦點(diǎn)F在x軸的正半軸上,過(guò)點(diǎn)F作x軸的垂線與W交于A、B兩點(diǎn),且點(diǎn)A在第一象限,|AB|=8,過(guò)點(diǎn)B作直線BC與x軸交于點(diǎn)T(t,0)(t>2),與拋物線交于點(diǎn)C.
(1)求拋物線W的標(biāo)準(zhǔn)方程;
(2)若t=6,曲線G:x2+y2-2ax-4y+a2=0與直線BC有公共點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若|OB|2+|OC|2≤|BC|2,求△ABC的面積的最大值.
(1)設(shè)拋物線的方程為y2=2px,(p>0)
x=
p
2
,得y2=p2
所以2p=|AB|=8
拋物線的方程為y2=8x.…(4分)
(2)若t=6即T(6,0),又B(2,-4),則直線BC的方程為x-y-6=0…(5分)
曲線G:(x-a)2+(y-2)2=4,是以(a,2)為圓心,2為半徑的圓…(6分)
由題意
|a-2-6|
2
≤2
,解得8-2
2
≤a≤8+2
2
.…(8分)
(3)直線BT的方程為y=
4
t-2
(x-t)
,代入拋物線方程y2=8x,得:
2x2-(t2+4)x+2t2=0
因?yàn)閠>2,所以△=t4-8t2+16=(t2-4)2>0.…(9分)
因?yàn)閤=2是這個(gè)方程的一個(gè)根,設(shè)C(xC,yC)根據(jù)韋達(dá)定理2xC=t2,所以xC=
t2
2

再由拋物線方程可得yC=2t,即點(diǎn)C(
t2
2
,2t)
.…(10分)
因?yàn)閨OB|2+|OC|2≤|BC|2,所以∠BOC為鈍角或直角
所以
OB
OC
≤0
,即2xC-4yC≤0,t2-8t≤0,且t>2,解得2<t≤8.…(12分)
ABC的面積S△ABC=
1
2
|AB|•(xC-2)=2t2-8

所以當(dāng)t=8時(shí),S△ABC最大值為120.….(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為
3
2
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A,B,且∠AOB為銳角(O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍;
(3)過(guò)原點(diǎn)O任意作兩條互相垂直的直線與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)相交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR的一邊距離為d,試求d=1時(shí)a,b滿(mǎn)足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)的右頂點(diǎn)為P(1,0),過(guò)C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為1.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)拋物線C2:y=x2+h(h∈R)的焦點(diǎn)為F,過(guò)F點(diǎn)的直線l交拋物線與A、B兩點(diǎn),過(guò)A、B兩點(diǎn)分別作拋物線C2的切線交于Q點(diǎn),且Q點(diǎn)在橢圓C1上,求△ABQ面積的最值,并求出取得最值時(shí)的拋物線C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知P是橢圓
x2
45
+
y2
20
=1
的第三象限內(nèi)一點(diǎn),且它與兩焦點(diǎn)連線互相垂直,若點(diǎn)P到直線4x-3y-2m+1=0的距離不大于3,則實(shí)數(shù)m的取值范圍是( 。
A.[-7,8]B.[-
9
2
,
21
2
]
C.[-2,2]D.(-∞,-7]∪[8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知A(-2,0),B(2,0),P為平面內(nèi)一動(dòng)點(diǎn),直線PA,PB的斜率之積為-
1
4
,記動(dòng)點(diǎn)P的軌跡為C.
(1)求曲線C的軌跡方程;
(2)若點(diǎn)D(0,2),點(diǎn)M,N是曲線C上的兩個(gè)動(dòng)點(diǎn),且
DM
DN
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線y=2x+b與曲線xy=2相交于A,B兩點(diǎn),若|AB|=5,則實(shí)數(shù)b的值是( 。
A.2B.-2C.±2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),F(xiàn)1、F2是其左右焦點(diǎn),其離心率是
6
3
,P是橢圓上一點(diǎn),△PF1F2的周長(zhǎng)是2(
3
+
2
).
(1)求橢圓的方程;
(2)試對(duì)m討論直線y=2x+m(m∈R)與該橢圓的公共點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)F1(-1,0),F2(1,0),動(dòng)點(diǎn)M滿(mǎn)足|MF1|+|MF2|=2
2

(1)求M的軌跡C的方程;
(2)設(shè)直線l:y=
7
7
(x-1)
與曲線C交于A、B兩點(diǎn),求
F1A
F1B
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知
a
=(2mx,y-1),
b
=(2x,y+1)
,其中m∈R,
a
b
,動(dòng)點(diǎn)M(x,y)的軌跡為C.
(1)求軌跡C的方程,并說(shuō)明該軌跡方程所表示曲線的形狀;
(2)當(dāng)m=
1
8
時(shí),設(shè)過(guò)定點(diǎn)P(0,2)的直線l與軌跡C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案