已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.試求曲線和的直角坐標(biāo)方程,并判斷兩曲線的位置關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 (,為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心在極軸上,且經(jīng)過極點的圓.已知曲線C1上的點M(1,)對應(yīng)的參數(shù)j=,曲線C2過點D(1,).
(I)求曲線C1,C2的直角坐標(biāo)方程;
(II)若點A(r1,q),B(r2,q+)在曲線C1上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(-2,-4)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,直線的參數(shù)方程為:(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的平面直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于點,若點的坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)直線(為參數(shù))與曲線C交于,兩點,與軸交于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,直線的極坐標(biāo)方程為是上任意一點,點P在射線OM上,且滿足,記點P的軌跡為。
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)求曲線上的點到直線距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 .
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,),判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的極坐標(biāo)方程為: .
⑴將極坐標(biāo)方程化為普通方程;
⑵若點P(x,y)在該圓上,求x+y的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com