已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),且
a
≠±
b
,那么
a
+
b
a
-
b
的夾角的大小是
 
分析:用兩個向量的夾角公式表示出要求的夾角,在夾角公式的分子上出現(xiàn)結果是0,題目變得簡單,兩個向量數(shù)量積為0時兩個向量的垂直,則它們的夾角是
π
2
解答:解:∵
a
+
b
=(cosα+cosβ,sinα+sinβ),
a
-
b
=(cosα-cosβ,sinα-sinβ),
∴(
a
+
b
)•(
a
-
b
)=(cosα-cosβ)(cosα+cosβ)+(sinα-sinβ)(sinα+sinβ)
=cosα2-cosβ2+sinα2-sinβ2
=1-1=0
a
+
b
a
-
b
的夾角為θ,
則cosθ=0,
故θ=
π
2
,
故答案為:
π
2
點評:本題是向量數(shù)量積的運算,條件中給出兩個向量的模和兩向量的夾角,代入數(shù)量積的公式運算即可,只是題目所給的模不是數(shù)字,而是用三角函數(shù)表示的式子,因此代入后,還要進行簡單的三角函數(shù)變換.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosα,1),
b
=(-2,sinα),α∈(π,
2
)
,且
a
b

(1)求sinα的值;
(2)求tan(α+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cos(-θ),sin(-θ)),
b
=(cos(
π
2
-θ),sin(
π
2
-θ))

(1)求證:
a
b

(2)若存在不等于0的實數(shù)k和t,使
x
=
a
+(t2+3)
b
,
y
=(-k
a
+t
b
),滿足
x
y
,試求此時
k+t2
t
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosθ,sinθ),θ∈[0,π],向量
b
=(
3
,1),b=(
3
,1)
,
a
b
,則θ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosα,sinα),
b
=(sinβ,-cosβ),則|
a
+
b
|最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosθ,sinθ),向量
b
=(2
2
,-1),則|3
a
-
b
|的最大值是
 

查看答案和解析>>

同步練習冊答案