【題目】程大位是明代著名數(shù)學家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

【答案】C

【解析】

由已知中的程序可知:該程序的功能是利用循環(huán)結構計算并輸出變量的值,模擬程序運行過程,分析循環(huán)中各變量值的變化情況,即可求解.

模擬程序的運行,可得:

執(zhí)行循環(huán)體,

不滿足判斷條件,執(zhí)行循環(huán)體,

不滿足判斷條件,執(zhí)行循環(huán)體,;

不滿足判斷條件,執(zhí)行循環(huán)體,;

不滿足判斷條件,執(zhí)行循環(huán)體,;

不滿足判斷條件,執(zhí)行循環(huán)體,;

不滿足判斷條件,執(zhí)行循環(huán)體,;

滿足判斷條件,退出循環(huán),輸出的值為.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知的頂點,邊上中線所在直線方程為,邊上的高所在直線方程為,求:

1)頂點的坐標;

2)求外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當,

①求函數(shù)在點處的切線方程;

②比較的大小;

2)當時,若對時,,且有唯一零點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),若存在正常數(shù)、,使得對一切均成立,則稱是“控制增長函數(shù)”.在以下四個函數(shù)中:①;②;③;④.是“控制增長函數(shù)”的有( )個

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)求曲線在點處的切線方程;

2)若函數(shù)的圖像有兩個交點,它們的橫坐標分別為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過雙曲線的右焦點且垂直于軸的直線與雙曲線交于兩點,為虛軸的一個端點,且為鈍角三角形,則此雙曲線離心率的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了豐富學生活動,在體育課上,體育教師設計了一個游戲,讓甲、乙、丙三人各抓住橡皮帶的一端,甲站在直角斜邊的中點處,乙站在處,丙站在.游戲開始,甲不動,乙、丙分別以的速度同時出發(fā),勻速跑向終點,運動過程中繃緊的橡皮帶圍成一個如圖所示的.(規(guī)定:只要有一人跑到終點,游戲就結束,且.已知長為長為,記經(jīng)過的面積為.

1)求關于的函數(shù)表示,并求出的取值范圍;

2)當游戲進行到時,體育教師宣布停止,求此時的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,點,是曲線上的任意一點,動點滿足

1)求點的軌跡方程;

2)經(jīng)過點的動直線與點的軌跡方程交于兩點,在軸上是否存在定點(異于點),使得?若存在,求出的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的偶函數(shù),滿足,當時,,若,,,則,,的大小關系為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案