已知雙曲線C:數(shù)學(xué)公式(a>0,b>0)的離心率為數(shù)學(xué)公式,且過(guò)點(diǎn)(4,3).
(1)求雙曲線C的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo);
(2)已知點(diǎn)P在雙曲線C上,且∠F1PF2=90°,求點(diǎn)P到x軸的距離.

解:(1)∵∴a2=b2
∴雙曲線C:…(2分)
將點(diǎn)(4,3)代入得a2=b2=1…(4分)
∴雙曲線C的標(biāo)準(zhǔn)方程為x2-y2=1,焦點(diǎn)坐標(biāo)為F1)和F2)…(6分)
(2)由已知得∴|F1P|•|F2P|=2…(9分)
所以點(diǎn)P到x軸的距離為.…(12分)
分析:(1)通過(guò)離心率與點(diǎn)在雙曲線上,得到兩個(gè)方程,求出a,b,即可求雙曲線C的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo);
(2)利用點(diǎn)P在雙曲線C上,且∠F1PF2=90°,勾股定理與雙曲線的定義列出方程,利用三角形的面積,求點(diǎn)P到x軸的距離.
點(diǎn)評(píng):本題考查雙曲線方程的求法,雙曲線的簡(jiǎn)單性質(zhì),考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年濰坊市六模)(12分)已知雙曲線Ca>0,b>0),B是右頂點(diǎn),F是右焦點(diǎn),點(diǎn)Ax軸正半軸上,且滿足、成等比數(shù)列,過(guò)F作雙曲線C在第一、第三象限的漸近線的垂線l,垂足為P

  (1)求證:;

 。2)若l與雙曲線C的左、右兩支分別相交于點(diǎn)D、E,求雙曲線C的離心率e的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:=1(a>0,b>0),B是右頂點(diǎn),F(xiàn)是右焦點(diǎn),點(diǎn)A在x軸的正半軸,且滿足||、||、||成等比數(shù)列,過(guò)F作雙曲線C在第一、三象限的漸近線的垂線l,垂足為P.

(1)求證:·=·

(2)若l與雙曲線C的左、右兩支分別交于點(diǎn)D、E,求雙曲線C的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:=1(a>0,b>0),B是右頂點(diǎn),F(xiàn)是右焦點(diǎn),點(diǎn)A在x軸正半軸上,且||、||、||成等比數(shù)列,過(guò)F作雙曲線C在第一、三象限的漸近線的垂線l,垂足為P.

(1)求證:·=·

(2)若l與雙曲線C的左、右兩支分別相交于點(diǎn)D、E,求雙曲線離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(全國(guó)大綱卷解析版) 題型:解答題

已知雙曲線C:(a>0,b>0)的左、右焦點(diǎn)分別為,離心率為3,直線y=2與C的兩個(gè)交點(diǎn)間的距離為.

(Ⅰ)求a,b;

(Ⅱ)設(shè)過(guò)的直線l與C的左、右兩支分別交于A、B兩點(diǎn),且,證明:、成等比數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高三(上)周練數(shù)學(xué)試卷(12.22)(解析版) 題型:填空題

在平面直角坐標(biāo)系xOy中,已知雙曲線C:(a>0)的一條漸近線與直線l:2x-y+1=0垂直,則實(shí)數(shù)a=   

查看答案和解析>>

同步練習(xí)冊(cè)答案