如圖,平面α⊥平面β,α∩β=l,A∈β,B∈α,且AB與l所成的角為60°,A、B到l的距離分別為1、
3
,求線段AB的長.
分析:在平面β內(nèi)作AD⊥l于D,在平面α內(nèi)作CD⊥l,BC⊥CD于C,連AC,依題意,可求得AC=2,從而解直角三角形ABC即可.
解答:解:∵平面α⊥平面β,α∩β=l,A∈β,B∈α,且AB與l所成的角為60°,依題意,作圖如下:
在平面β內(nèi)作AD⊥l于D,BC在平面α內(nèi)作CD⊥l,BC⊥CD于C,連AC
則BC⊥平面ACD,
∴BC⊥AC;
則AD=1,
CD=
3

∴AC=2,
∵AB與l所成角為60°,
∴∠ABC=60°
∴AB=
2
sin60°
=
4
3
3
點(diǎn)評:本題考查平面與平面垂直的性質(zhì),考查解三角形的能力,考查作圖與轉(zhuǎn)化能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知等腰△ABC的底邊BC=3,頂角為120°,D是BC邊上一點(diǎn),且BD=1.把△ADC沿AD折起,使得平面CAD⊥平面ABD,連接BC形成三棱錐C-ABD.
(Ⅰ) ①求證:AC⊥平面ABD;②求三棱錐C-ABD的體積;
(Ⅱ) 求AC與平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面α⊥平面β,A∈α,B∈β,AB與平面α、β所成的角分別為
π
4
π
6
,過A、B分別作兩平面交線的垂線,垂足為A′、B′,若AB=12,求A′B′的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖(1)直線l∥AB,且與CA,CB分別相交于點(diǎn)E,F(xiàn),EF與AB間的距離是d,點(diǎn)P是線段EF上任意一點(diǎn),Q是線段AB上任意一點(diǎn),則|PQ|的最小值等于d.類比上述結(jié)論我們可以得到:在圖(2)中,平面α∥平面ABC,且與DA,DB,DC分別相交于點(diǎn)E,F(xiàn),G,平面α與平面ABC間的距離是m,
a,b分別是平面α與平面ABC內(nèi)的任意一條直線,則a,b間距離的最小值是m.
或P,Q分別是平面α與平面ABC內(nèi)的任意一點(diǎn),則P,Q間距離的最小值是m.
a,b分別是平面α與平面ABC內(nèi)的任意一條直線,則a,b間距離的最小值是m.
或P,Q分別是平面α與平面ABC內(nèi)的任意一點(diǎn),則P,Q間距離的最小值是m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•威海二模)如圖1,在梯形ABCD中,BC∥DA,BE⊥DA,EA=EB=BC=2,DE=1,將四邊形DEBC沿BE折起,使平面DEBC垂直平面ABE,如圖2,連結(jié)AD,AC.設(shè)M是AB上的動點(diǎn).
(Ⅰ)若M為AB中點(diǎn),求證:ME∥平面ADC;
(Ⅱ)若AM=
13
AB
,求三棱錐M-ADC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

如圖,平面平面,點(diǎn)EF、O分別為線段PA、PB、AC的中點(diǎn),點(diǎn)G是線段CO的中點(diǎn),

,

求證:   (Ⅰ)平面;

(Ⅱ)∥平面

查看答案和解析>>

同步練習(xí)冊答案