【題目】定義運(yùn)算: ,例如:34=3,(﹣2)4=4,則函數(shù)f(x)=x2(2x﹣x2)的最大值為 .
【答案】4
【解析】解:由x2=2x﹣x2 , 得x2=x,解得x=0或x=1,
由y=2x﹣x2≥0,得0≤x≤2,
由y=2x﹣x2<0,得x<0或x>2,
∴由x2(2x﹣x2)≥0時(shí),
解得0≤x≤2,
由x2(2x﹣x2)<0
解得x<0或x>2,
即當(dāng)0≤x≤2時(shí),f(x)=x2 ,
當(dāng)x<0或x>2時(shí),f(x)=2x﹣x2 .
作出對應(yīng)的函數(shù)圖象
∴圖象可知當(dāng)x=2時(shí),函數(shù)f(x)取得最大值f(2)=4.
所以答案是:4.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若曲線上的點(diǎn)到直線的最大距離為6,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高一新生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班級進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出莖葉圖如圖.記成績不低于90分者為“成績優(yōu)秀”.
(1)在乙班樣本的20個(gè)個(gè)體中,從不低于86分的成績中隨機(jī)抽取2個(gè),求抽出的2個(gè)均“成績優(yōu)秀”的概率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)作出列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為:“成績優(yōu)秀”與教學(xué)方式有關(guān).
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機(jī)構(gòu)對高三學(xué)生的記憶力和判斷力進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):
(1)請根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明與的線性相關(guān)程度;(結(jié)果保留小數(shù)點(diǎn)后兩位,參考數(shù)據(jù): )
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.
參考公式:,;相關(guān)系數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若不等式在時(shí)恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如頻率分布直方圖:
(1)求這件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
①利用該正態(tài)分布,求;
②某用戶從該企業(yè)購買了件這種產(chǎn)品,記表示這件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù).利用①的結(jié)果,求.
附:.若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將3本相同的小說,2本相同的詩集全部分給4名同學(xué),每名同學(xué)至少1本,則不同的分法有( )
A. 24種 B. 28種 C. 32種 D. 36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x﹣alnx+ .
(Ⅰ)若a>1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>3,函數(shù)g(x)=a2x2+3,若存在x1 , x2∈[ ,2],使得|f(x1)﹣g(x2)|<9成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:x2=4y的焦點(diǎn)為F,斜率為k的直線l經(jīng)過點(diǎn)F,若拋物線C上存在四個(gè)點(diǎn)到直線l的距離為2,則k的取值范圍是( )
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1, )
C.(﹣ , )
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com