【題目】已知函數(shù)在處取到極值為.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式在上恒成立,求實(shí)數(shù)k的取值范圍.
【答案】(1)單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;(2).
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),結(jié)合題意得到關(guān)于a,b的方程,求出a,b的值,求出函數(shù)的單調(diào)區(qū)間即可;
(2)問題等價(jià)于在上恒成立,令,則只需即可,根據(jù)函數(shù)的單調(diào)性判斷求解即可.
解:(1)由已知定義域?yàn)?/span>,
,
由,又,得,
,所以,
所以,又.
由得:x>2;由得:x<0或0<x<2.
故f(x)的單調(diào)遞減區(qū)間是;單調(diào)遞增區(qū)間是.
(2)問題等價(jià)于在x∈上恒成立,
令,
則只需即可.
,
令,
則.
所以在上單調(diào)遞增,
又,,
所以有唯一的零點(diǎn),
在上單調(diào)遞減,在上單調(diào)遞增.
因?yàn)?/span>,兩邊同時(shí)取自然對(duì)數(shù),則有,
即.
構(gòu)造函數(shù),則,
所以函數(shù)在上單調(diào)遞增,
又,所以,即.
所以,即,
于是實(shí)數(shù)k的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線C:的焦點(diǎn)到直線l:的距離為.
(1)求m的值.
(2)如圖,已知拋物線C的動(dòng)弦的中點(diǎn)M在直線l上,過點(diǎn)M且平行于x軸的直線與拋物線C相交于點(diǎn)N,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為廣泛開展垃圾分類的宣傳教育和倡導(dǎo)工作,使市民樹立垃圾分類的環(huán)保意識(shí),學(xué)會(huì)垃圾分類的知識(shí),特舉辦了“垃圾分類知識(shí)競(jìng)賽".據(jù)統(tǒng)計(jì),在為期1個(gè)月的活動(dòng)中,共有兩萬人次參與網(wǎng)絡(luò)答題.市文明實(shí)踐中心隨機(jī)抽取100名參與該活動(dòng)的市民,以他們單次答題得分作為樣本進(jìn)行分析,由此得到如圖所示的頻率分布直方圖:
(1)求圖中a的值及參與該活動(dòng)的市民單次挑戰(zhàn)得分的平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表);
(2)若垃圾分類答題挑戰(zhàn)賽得分落在區(qū)間之外,則可獲得一等獎(jiǎng)獎(jiǎng)勵(lì),其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得,若某人的答題得分為96分,試判斷此人是否獲得一等獎(jiǎng);
(3)為擴(kuò)大本次“垃圾分類知識(shí)競(jìng)賽”活動(dòng)的影響力,市文明實(shí)踐中心再次組織市民組隊(duì)參場(chǎng)有獎(jiǎng)知識(shí)競(jìng)賽,競(jìng)賽共分五輪進(jìn)行,已知“光速隊(duì)”與“超能隊(duì)”五輪的成績?nèi)缦卤恚?/span>
成績 | 第一輪 | 第二輪 | 第三輪 | 第四輪 | 第五輪 |
“光速隊(duì)” | 93 | 98 | 94 | 95 | 90 |
“超能隊(duì)” | 93 | 96 | 97 | 94 | 90 |
①分別求“光速隊(duì)”與“超能隊(duì)”五輪成績的平均數(shù)和方差;
②以上述數(shù)據(jù)為依據(jù),你認(rèn)為"光速隊(duì)”與“超能隊(duì)”的現(xiàn)場(chǎng)有獎(jiǎng)知識(shí)競(jìng)賽成績誰更穩(wěn)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x與y之間的幾組數(shù)據(jù)如表:
x | 1 | 2 | 3 | 4 |
y | 1 | m | n | 4 |
如表數(shù)據(jù)中y的平均值為2.5,若某同學(xué)對(duì)m賦了三個(gè)值分別為1.5,2,2.5,得到三條線性回歸直線方程分別為,,,對(duì)應(yīng)的相關(guān)系數(shù)分別為,,,下列結(jié)論中錯(cuò)誤的是( )
參考公式:線性回歸方程中,其中,.相關(guān)系數(shù).
A.三條回歸直線有共同交點(diǎn)B.相關(guān)系數(shù)中,最大
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,過對(duì)角線作平面交棱于點(diǎn),交棱于點(diǎn),下列正確的是( )
A.平面分正方體所得兩部分的體積相等;
B.四邊形一定是平行四邊形;
C.平面與平面不可能垂直;
D.四邊形的面積有最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有邊長均為1的正方形正五邊形正六邊形及半徑為1的圓各一個(gè),在水平桌面上無滑動(dòng)滾動(dòng)一周,它們的中心的運(yùn)動(dòng)軌跡長分別為,,,,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是各項(xiàng)均為正數(shù)的無窮數(shù)列,且滿足,.
(1)若,,求a的值;
(2)設(shè)數(shù)列滿足,其前n項(xiàng)的和為.
①求證:是等差數(shù)列;
②若對(duì)于任意的,都存在,使得成立.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著2022年北京冬奧會(huì)的臨近,中國冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運(yùn)動(dòng)人數(shù)快速上升,冰雪運(yùn)動(dòng)市場(chǎng)需求得到釋放.如圖是2012-2018年中國雪場(chǎng)滑雪人數(shù)(單位:萬人)與同比增長情況統(tǒng)計(jì)圖則下面結(jié)論中正確的是( ).
A.2012-2018年,中國雪場(chǎng)滑雪人數(shù)逐年增加;
B.2013-2015年,中國雪場(chǎng)滑雪人數(shù)和同比增長率均逐年增加;
C.中國雪場(chǎng)2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬人,因此這兩年的同比增長率均有提高;
D.2016-2018年,中國雪場(chǎng)滑雪人數(shù)的增長率約為23.4%.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com