求函數(shù)y=-x2-2x+3(-5≤x≤-2)的值域.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:配方確定函數(shù)在區(qū)間上的單調(diào)性,利用單調(diào)性即可求得函數(shù)的值域.
解答: 解:配方得y=-x2-2x+3=-(x+1)2+4,對稱軸x=-1,
∵-5≤x≤-2,
∴函數(shù)在[-5,-2]上單調(diào)增,
∴x=-2時,函數(shù)取得最大值3;x=-5時,函數(shù)取得最小值-12,
∴函數(shù)y=-x2-2x+3(-5≤x≤-2)的值域為[-12,4],
故答案為:[-12,3].
點評:本題考查二次函數(shù)的最值,解題的關(guān)鍵是配方確定函數(shù)在區(qū)間上的單調(diào)性.屬于難度較小的題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知全集U={x|x2>1},集合 A={x|x2-4x+3<0},則∁UA=(  )
A、(1,3)
B、(-∞,1)∪[3,+∞)
C、(-∞,-1)∪[3,+∞)
D、(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=8x的焦點為F,點M(-2,2),過點F且斜率為k的直線與C交于A,B兩點,若
MA
MB
=0
,則k=( 。
A、
2
B、
2
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B,M是直線l上不同的三點,點O在直線l外,若
OM
=m
AM
+(m-2)
OB
,則
|
MB
|
|
MA
|
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程
x|x|
16
+
y|y|
9
=-1 的曲線即為函數(shù)y=f(x)的圖象,對于函數(shù)y=f(x),有如下結(jié)論:
①f(x)在R上單調(diào)遞減;
②函數(shù)F(x)=4f(x)+3x不存在零點;
③函數(shù)y=f(|x|)的最大值3
④若函數(shù)g(x)和f(x)的圖象關(guān)于原點對稱,則函數(shù)y=g(x)由方程
x|x|
16
+
y|y|
9
=1確定.
其中所有正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=
π
6
,tanan+1=secan>0(n∈N*),(這里:secα=
1
cosα
,secα是表示α的正割)
(1)證明數(shù)列{tan2an}為等差數(shù)列;
(2)求正整數(shù)m,使得sina1•sina2…sinam=
1
100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=(1-ax)ln(x+1)-bx,其中a和b是實數(shù),曲線y=f(x)恒與x軸相切于坐標原點.
(1)求常數(shù)b的值;
(2)當0≤x≤1時,關(guān)于x的不等式f(x)≥0恒成立,求實數(shù)a的取值范圍;
(3)求證:(
10001
10000
10000.4<e<(
1001
1000
1000.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩人參加英語口語考試,已知在備選的10道試題中,甲能答對其中的6道,乙能答對其中的8題.規(guī)定每次考試都從備選題中隨機抽出3題進行測試,至少答對2題才算合格.
(Ⅰ)若一次考試中甲答對的題數(shù)為X,求X的概率分布和均值EX;
(Ⅱ)求甲、乙兩人至少有一人考試合格的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若連續(xù)拋兩次骰子分別所得的點數(shù)a,b作為點P的橫、縱坐標,則點P在直線x+y=5下方的概率是( 。
A、
1
3
B、
1
4
C、
1
6
D、
1
12

查看答案和解析>>

同步練習冊答案