(本小題滿分12分)如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分別交AC、PC于D、E兩點,又PB=BC,PA=AB.

(Ⅰ)求證:PC⊥平面BDE;
(Ⅱ)若點Q是線段PA上任一點,求證:BD⊥DQ;
(Ⅲ)求線段PA上點Q的位置,使得PC//平面BDQ.
(Ⅰ)證明:由等腰三角形PBC,得BE⊥PC
又DE垂直平分PC,∴DE⊥PC ∴PC⊥平面BDE,………… 4分
(Ⅱ)由(Ⅰ),有PC⊥BD
因為 PA⊥底面ABC ,所以PA⊥BD
BD⊥平面PAC,所以點Q是線段PA上任一點都有BD⊥DQ     ………………………………… 8分
(Ⅲ)解:不妨令PA=AB=1,有PB=BC= 計算得AD=AC 所以點Q在線段PA的處,即AQ=AP時,PC//QD,從而PC//平面BDQ .                  ……………………………………… 12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面ABCD是矩形,M、N分別為PA、BC的中點,PD⊥平面ABCD,且PD=AD=,CD=1
(1)證明:MN∥平面PCD;
(2)證明:MC⊥BD;
(3)求二面角A—PB—D的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P—ABCD的底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(Ⅰ)證明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在點F,使PB⊥平面DEF?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)

已知三棱錐P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N為AB上一點,AB=4AN,M,S分別為PB,BC的中點.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,三棱錐P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。
(I)求棱PB的長;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐P—ABCD中,AB∥CD,CD=2AB,AB平面PAD,E為PC的中點.
(1)求證:BE∥平面PAD;
(2)若ADPB,求證:PA平面ABC    D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,
∠BAD=∠ABC=90°,SA=AB=AD=,E為SD的中點。
(1)若F為底面BC邊上的一點,且BF=,求證:EF∥平面SAB;
(2)底面BC邊上是否存在一點G,使得二面角S-DG-A的正切值為?
若存在,求出G點位置;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在北緯圈上有A、B兩點,它們的經(jīng)度相差,A、B兩地沿緯線圈的弧長與A、B兩點的球面距離的比為(  )
A.    B.   C.    D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于直線,和平面,的一個充分條件是(   )
A.,,B.,,
C.,,D.,

查看答案和解析>>

同步練習冊答案