11.曲線y=$\frac{1}{3}{x^3}$+x-$\frac{1}{3}$在點(1,1)處的切線與坐標(biāo)軸圍成的三角形面積為( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 求出函數(shù)的導(dǎo)函數(shù),得到f′(1),即曲線在點(1,1)處的切線的斜率,寫出直線方程的點斜式,求出直線在兩坐標(biāo)軸上的截距,代入三角形面積公式得答案.

解答 解:由y=$\frac{1}{3}{x^3}$+x-$\frac{1}{3}$,得y′=x2+1,
∴y′|x=1=2,
則函數(shù)在點(1,1)處的切線方程為y-1=2(x-1),即2x-y-1=0.
取y=0,得x=$\frac{1}{2}$,
取x=0,得y=-1.
∴切線與坐標(biāo)軸圍成的三角形面積為S=$\frac{1}{2}×\frac{1}{2}×|-1|=\frac{1}{4}$.
故選:D.

點評 本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導(dǎo)數(shù)值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案