【題目】如圖,網(wǎng)格紙上的小正方形邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體外接球的體積為

【答案】8 π
【解析】解:幾何體為三棱錐,直觀圖如圖所示:

其中PA⊥底面ABC,AB⊥BC,BC=4,AB=PA=2,

以B為原點(diǎn)建立如圖所示的空間坐標(biāo)系B﹣xyz,

則A=(2,0,0),B(0,0,0),C(0,4,0),P(2,0,2),

設(shè)棱錐的外接球球心為M(x,y,z),則MA=MB=MC=MP,

即(x﹣2)2+y2+z2=x2+y2+z2=x2+(y﹣4)2+z2=(x﹣2)2+y2+(z﹣2)2,

∴x=1,y=2,z=1,

∴外接球半徑R=|MB|= =

∴外接球的體積V= =8 π.

故答案為:8 π.

作出幾何體的直觀圖,建立坐標(biāo)系,利用距離公式列方程求出外接球的球心坐標(biāo),從而得出外接球的半徑,代入體積公式計(jì)算得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·湖南)某工作的三視圖如圖3所示,現(xiàn)將該工作通過(guò)切削,加工成一個(gè)體積盡可能大的正方體新工件,并使新工件的一個(gè)面落在原工作的一個(gè)面內(nèi),則原工件材料的利用率為(材料利用率=新工件的體積/原工件的體積)

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=是定義在R上的奇函數(shù),且f(1)=1.

(1)求a,b的值;

(2)判斷并用定義證明f(x)在(+∞)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列幾個(gè)命題:

①函數(shù)是偶函數(shù),但不是奇函數(shù);

②方程的有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,;

是定義在上的奇函數(shù),當(dāng)時(shí),,則 時(shí),

④函數(shù)的值域是

其中正確命題的序號(hào)是_____(把所有正確命題的序號(hào)都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各項(xiàng)均為非負(fù)整數(shù)的數(shù)列{an}同時(shí)滿足下列條件: ①a1=m(m∈N*);②an≤n﹣1(n≥2);③n是a1+a2+…+an的因數(shù)(n≥1).
(Ⅰ)當(dāng)m=5時(shí),寫出數(shù)列{an}的前五項(xiàng);
(Ⅱ)若數(shù)列{an}的前三項(xiàng)互不相等,且n≥3時(shí),an為常數(shù),求m的值;
(Ⅲ)求證:對(duì)任意正整數(shù)m,存在正整數(shù)M,使得n≥M時(shí),an為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四邊形ABEF是正方形,且平面ABEF⊥平面ABCD,M為AF的中點(diǎn), (I)求證:AC⊥BM;
(II)求異面直線CE與BM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),(A,ω,φ是常數(shù),A>0,ω>0,|φ|≤ )的部分圖象如圖所示,若方程f(x)=a在x∈[﹣ ]上有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是(
A.[
B.[﹣ ,
C.[﹣ ,
D.[ ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1的參數(shù)方程為 (為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線C2 . (Ⅰ)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)若C1與C2相交于A、B兩點(diǎn),設(shè)點(diǎn)F(1,0),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線E:x2=2py(p>0)焦點(diǎn)F且傾斜角的60°直線l與拋物線E交于點(diǎn)M,N,△OMN的面積為4.
(1)求拋物線E的方程;
(2)設(shè)P是直線y=﹣2上的一個(gè)動(dòng)點(diǎn),過(guò)P作拋物線E的切線,切點(diǎn)分別為A、B,直線AB與直線OP、y軸的交點(diǎn)分別為Q、R,點(diǎn)C、D是以R為圓心、RQ為半徑的圓上任意兩點(diǎn),求∠CPD最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案