如圖,ABC的角平分線AD的延長線交它的外接圓于點E.

(1)證明:ABE∽△ADC

(2)ABC的面積SAD·AE,求BAC的大小.

 

1)見解析(290°

【解析】(1)由已知條件,可得BAECAD.因為AEBACB是同弧上的圓周角,所以AEBACD.ABE∽△ADC.

(2)因為ABE∽△ADC,所以,

AB·ACAD·AE.

SAB·ACsinBAC,且SAD·AE,

AB·AC·sinBACAD·AE.

sinBAC1,又BAC為三角形內(nèi)角,所以BAC90°

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題

已知拋物線y28x的準(zhǔn)線與雙曲線y21(m>0)交于A,B兩點,點F為拋物線的焦點,若FAB為直角三角形,則雙曲線的離心率是(  )

A. B. C2 D2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)Msin(ωxφ)(M>0,ω>0,|φ|<)的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;

(2)ABC中,角AB,C的對邊分別是ab,c,若(2ac)cos Bbcos C,求f的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:填空題

一出租車司機(jī)從飯店到火車站的途中經(jīng)過六個交通崗,假設(shè)他在各交通崗遇到紅燈這一事件是相互獨立的,并且概率都是.那么這位司機(jī)遇到紅燈前,已經(jīng)通過了兩個交通崗的概率是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:解答題

如圖,直線AB為圓O的切線,切點為B,點C在圓上,ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.

(1)證明:DBDC;

(2)設(shè)圓的半徑為1,BC,延長CEAB于點F,求BCF外接圓的半徑.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:填空題

如圖,已知RtABC的兩條直角邊AC,BC的長分別為3 cm,4 cm,以AC為直徑的圓與AB交于點D,則BD________cm.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:填空題

如圖,已知PAPB是圓O的切線,AB分別為切點,C為圓O上不與AB重合的另一點,若ACB120°,則APB________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)ax(1a2)x2,其中a>0,區(qū)間I{x|f(x)>0}

(1)I的長度(注:區(qū)間(αβ)的長度定義為βα);

(2)給定常數(shù)k(0,1),當(dāng)1ka≤1k時,求I長度的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題

a>3”函數(shù)f(x)ax3(1,2)上存在零點(  )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

 

查看答案和解析>>

同步練習(xí)冊答案