已知、為橢圓的左、右焦點(diǎn),且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過(guò)的直線交橢圓兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
(1);(2)當(dāng)不存在時(shí)圓面積最大, ,此時(shí)直線方程為.

試題分析:本題考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間的距離公式、三角形面積公式等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線的性質(zhì)以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.第一問(wèn),先設(shè)出橢圓的標(biāo)準(zhǔn)方程,利用橢圓的定義列出,解出的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),假設(shè)直線的斜率存在,設(shè)出直線方程與橢圓方程聯(lián)立,消參得出關(guān)于的方程,得到兩根之和、兩根之積,求出的面積,面積之和內(nèi)切圓的半徑有關(guān),所以當(dāng)的面積最大時(shí),內(nèi)切圓面積最大,換一種形式求的面積,利用換元法和配方法求出面積的最大值,而直線的斜率不存在時(shí),易求出和圓面積,經(jīng)過(guò)比較,當(dāng)不存在時(shí)圓面積最大.
試題解析:(Ⅰ)由已知,可設(shè)橢圓的方程為,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322392332462.png" style="vertical-align:middle;" />,所以,
所以,橢圓的方程為
(也可用待定系數(shù)法,或用)      4分
(2)當(dāng)直線斜率存在時(shí),設(shè)直線,由,
設(shè),     6分
所以
設(shè)內(nèi)切圓半徑為,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239093592.png" style="vertical-align:middle;" />的周長(zhǎng)為(定值),,所以當(dāng)的面積最大時(shí),內(nèi)切圓面積最大,又,    8分
,則,所以    10分
又當(dāng)不存在時(shí),,此時(shí)
故當(dāng)不存在時(shí)圓面積最大, ,此時(shí)直線方程為.      12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的頂在坐標(biāo)原點(diǎn),焦點(diǎn)到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點(diǎn),設(shè)線段的中垂線與軸交于點(diǎn) ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,為原點(diǎn).
(1)如圖1,點(diǎn)為橢圓上的一點(diǎn),的中點(diǎn),且,求點(diǎn)軸的距離;

(2)如圖2,直線與橢圓相交于、兩點(diǎn),若在橢圓上存在點(diǎn),使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)如圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長(zhǎng)2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個(gè)橢圓。

(1)若最大拱高h(yuǎn)為6 m,則隧道設(shè)計(jì)的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應(yīng)如何設(shè)計(jì)拱高h(yuǎn)和拱寬?(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高。)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個(gè)點(diǎn)M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點(diǎn)為支點(diǎn),用合金鋼板把隧道拱線部分連接封閉,形成一個(gè)梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價(jià)是梯形頂部單位面積鋼板造價(jià)的倍,試確定M、N的位置以及的值,使總造價(jià)最少。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校同學(xué)設(shè)計(jì)一個(gè)如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中、是過(guò)拋物線焦點(diǎn)的兩條弦,且其焦點(diǎn),點(diǎn)軸上一點(diǎn),記,其中為銳角.

(1)求拋物線方程;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的長(zhǎng)軸為AB,過(guò)點(diǎn)B的直線
軸垂直,橢圓的離心率,F為橢圓的左焦點(diǎn),且

(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點(diǎn), 軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q,使得HP=PQ,連接AQ并延長(zhǎng)交直線于點(diǎn),的中點(diǎn),判定直線與以為直徑的圓O位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過(guò)點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線交于兩點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的左焦點(diǎn)為F1,左、右頂點(diǎn)分別為A1、A2,P為雙曲線上任意一點(diǎn),則分別以線段PF1,A1A2為直徑的兩個(gè)圓的位置關(guān)系為(   )
A.相交B.相切C.相離D.以上情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的左右焦點(diǎn)分別為,為雙曲線的中心,是雙曲線右支上的點(diǎn),的內(nèi)切圓的圓心為,且圓軸相切于點(diǎn),過(guò)作直線的垂線,垂足為,若為雙曲線的離心率,則(   )
A.B.
C.D.關(guān)系不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案