若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5;則f(x)=a2x2+a1x+a0的單調(diào)遞減區(qū)間是
 
考點(diǎn):二項(xiàng)式定理的應(yīng)用,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用,二項(xiàng)式定理
分析:利用二項(xiàng)展開式的通項(xiàng)公式可求得a0=1,a1=-5,a2=
C
2
5
=10,從而可得f(x)=10x2-5x+1的單調(diào)遞減區(qū)間.
解答: 解:∵(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,
∴a0=1,a1=-
C
1
5
=-5,a2=
C
2
5
=10,
∴f(x)=10x2-5x+1=10(x-
1
4
)
2
+
3
8
,
∴y=f(x)的單調(diào)遞減區(qū)間為(-∞,
1
4
],
故答案為:(-∞,
1
4
].
點(diǎn)評:本題考查二項(xiàng)式定理的應(yīng)用及二次函數(shù)的單調(diào)性質(zhì),求得a0、a1、a2的值是關(guān)鍵,考查運(yùn)算求解能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-1-ax,(a∈R).
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)試探究函數(shù)F(x)=f(x)-xlnx在定義域內(nèi)是否存在零點(diǎn),若存在,請指出有幾個(gè)零點(diǎn);若不存在,請說明理由.
(Ⅲ)若g(x)=ln(ex-1)-lnx,且f(g(x))<f(x)在x∈(0,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①已知a,b,m都是正數(shù),且
a+m
b+m
a
b
,則a<b;
②若函數(shù)f(x)=lg(ax+1)的定義域是{x|x<1},則a<-1;
③已知x∈(0,π),則y=sinx+
2
sinx
的最小值為2
2
;
④已知a、b、c成等比數(shù)列,a、x、b成等差數(shù)列,b、y、c也成等差數(shù)列,則
a
x
+
c
y
的值等于2;
⑤已知函數(shù)f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),則b的取值范圍為(2-
2
,2+
2
).
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx+
3
cosx,x∈[-
3
,
π
3
]的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的準(zhǔn)線與圓C:x2+y2=1相切,則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足(l+2i)z=|3+4i|(i為虛數(shù)單位),則復(fù)數(shù)z等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
x≥1
x+y≤4
ax+by+c≤0
,且2x+y的取值范圍是[1,7],則
a+b+c
a
=( 。
A、1B、2C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x2-2x+5=0的一個(gè)根是( 。
A、1+2iB、-1+2i
C、2+iD、2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,x軸被曲線C2:y=x2-b截得的線段長等于橢圓C1的短軸長.C2與y軸的交點(diǎn)為M,過點(diǎn)M的兩條互相垂直的直線l1,l2分別交拋物線于A、B兩點(diǎn),交橢圓于D、E兩點(diǎn),
(Ⅰ)求C1、C2的方程;
(Ⅱ)記△MAB,△MDE的面積分別為S1、S2,若
S1
S2
=
5
8
,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊答案