設(shè)f(x)=cosx-sinx,把f(x)的圖象向右平移m(m>0)后,圖象恰好為函數(shù)y=-f'(x)的圖象,則m的值可以為( 。
分析:利用兩角差和的余弦函數(shù)化簡(jiǎn)函數(shù)f(x)=cosx-sinx,然后求出平移后的函數(shù)表達(dá)式; 利用兩個(gè)函數(shù)表達(dá)式相同:
2
cos[(x-m )+
π
4
]=
2
cos(x-
π
4
),可得 2kπ-m+
π
4
=-
π
4
,k∈z,即可求出正數(shù)m的最小值.
解答:解:f(x)=cosx-sinx=
2
cos(
π
4
+x ),函數(shù)y=-f'(x)=sinx+cosx=
2
cos(x-
π
4
),
故把f(x)的圖象向右平移m個(gè)單位即可得到函數(shù)y=
2
cos[(x-m )+
π
4
]的圖象,恰好為函數(shù)y=-f'(x)的圖象.
∴2kπ-m+
π
4
=-
π
4
,k∈z.∴m=2kπ+
π
2
,k∈z.故正數(shù)m的最小值等于
π
2

故選:D.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的化簡(jiǎn),兩角和與差的余弦函數(shù),導(dǎo)數(shù)的計(jì)算等知識(shí),基本知識(shí)的掌握程度決定解題能力的高低,可見(jiàn)功在平時(shí)的重要性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=cosx-sinx把y=f(x)的圖象按向量
a
=(φ,0)(φ>0)平移后,恰好得到函數(shù)y=f′(x)的圖象,則φ的值可以為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=cosx-sinx,把y=f(x)的圖象向左平移α(α>0)個(gè)單位后,恰好得到函數(shù)y=-f(x)的圖象,則α的值可以為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x),g(x)滿足關(guān)系g(x)=f(x)•f(x+α)其中α是常數(shù).
(1)設(shè)f(x)=cosx+sinx,α=
π
2
,求g(x)的解析式;
(2)設(shè)計(jì)一個(gè)函數(shù)f(x)及一個(gè)α(0<α<π)的值使得g(x)=
1
2
sin2x;
(3)設(shè)常數(shù)α=0,f(x)=
kx 
(0<k<1),并已知0<x1<x2
π
2
時(shí),總有
sinx1
x1
sinx2
x2
成立,當(dāng)x∈( 0,
π
2
)
時(shí),試比較sin[g(x)]與g(sinx)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=cosx-sinx把f(x)的圖象按向量
a
=(m,0)(m>0)
平移后,圖象恰好為函數(shù)f(x)=sinx+cosx的圖象,則m的值可以為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案