【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號,某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線性相關關系,求產(chǎn)品銷量y(件)關于試銷單價x(元)的線性回歸方程;
(Ⅲ)用表示用(Ⅱ)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學期望.
(參考公式:線性回歸方程中最小二乘估計分別為)
【答案】(Ⅰ)(Ⅱ)(Ⅲ)見解析,
【解析】
試題(Ⅰ)根據(jù),可求得結果;(Ⅱ)由公式可得 ,樣本的中心點帶入可得值,從而求得回歸方程;(Ⅲ)()的共有 個“好數(shù)據(jù)”:、、.
于是的所有可能取值為,,,.分別求出對應概率,利用期望公式求解即可.
試題解析:(Ⅰ),可得 解得.
(Ⅱ),
,
所以所求的線性回歸方程為.
(Ⅲ)利用(Ⅱ)中所求的線性回歸方程可得,當時,;當時,;當時,;當時,;當時,;當時,.
與銷售數(shù)據(jù)對比可知滿足(1,2,…,6)的共有3個“好數(shù)據(jù)”:、、.
于是的所有可能取值為,,,.
;;;,
∴的分布列為:
0 | 1 | 2 | 3 | |
于是.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,已知平面平面,且,為等邊三角形,,,.與平面所成角的正弦值為.
(1)證明:平面;
(2)若是的中點,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬元)滿足.設甲大棚的投入為(單位:萬元),每年兩個大棚的總收益為(單位:萬元)
(1)求的值;
(2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù));以原點極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
⑴ 求曲線的普通方程與曲線的直角坐標方程;
⑵ 試判斷曲線與是否存在兩個交點,若存在求出兩交點間的距離;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年1月31日晚上月全食的過程分為初虧、食既、食甚、生光、復圓五個階段,月食的初虧發(fā)生在19時48分,20時51分食既,21時29分食甚,22時07分生光,23時11分復圓.月全食伴隨有藍月亮和紅月亮,全食階段的“紅月亮”在食既時刻開始,生光時刻結束.小明準備在19:55至21:56之間的某個時刻欣賞月全食,則他等待“紅月亮”的時間不超過30分鐘的概率是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的離心率為,且過點.
(1)求橢圓C的方程;
(2)直線l交橢圓C于不同的兩點A、B,且中點E在直線上,線段的垂直平分線交y軸于點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為認真貫徹落實黨中央國務院決策部署,堅持“房子是用來住的,不是用來炒的”定位,堅持調控政策的連續(xù)性和穩(wěn)定性,進一步穩(wěn)定某省市商品住房市場,該市人民政府辦公廳出臺了相關文件來控制房價,并取得了一定效果,下表是2019年2月至6月以來該市某城區(qū)的房價均值數(shù)據(jù):
(月份) | 2 | 3 | 4 | 5 | 6 |
(房價均價:千元/平方米) | 9.80 | 9.70 | 9.30 | 9.20 |
已知:.
(1)若變量、具有線性相關關系,求房價均價(千元/平方米)關于月份的線性回歸方程;
(2)根據(jù)線性回歸方程預測該市某城區(qū)7月份的房價.
(參考公式:用最小二乘法求線性回歸方程的系數(shù)公式)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角中,,通過以直線為軸順時針旋轉得到().點為斜邊上一點.點為線段上一點,且.
(1)證明:平面;
(2)當直線與平面所成的角取最大值時,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com