要得到函數(shù)y=lgx的圖象,只需把函數(shù)y=lg(x-2)的圖象( 。
分析:根據(jù)圖象平移和函數(shù)對應(yīng)關(guān)系去求.y=lg(x-2)→y=lgx,尋找他們的變化關(guān)系.
解答:解:根據(jù)兩個函數(shù)的關(guān)系可知,將y=lg(x-2)向左平移2個單位長度,得到y(tǒng)=lg(x+2-2)=lgx,
所以選C.
故選:C.
點評:本題考查了兩個圖象之間的關(guān)系,要求熟練掌握圖象變化的規(guī)律,“左加右減,上加下減”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①“向量
a
,
b
的夾角為銳角”的充要條件是“
a
b
>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2
;
③設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“密切函數(shù)”,區(qū)間[a,b]稱為“密切區(qū)間”.若f(x)=x2-3x+4與g(x)=2x-3在[a,b]上是“密切函數(shù)”,則其“密切區(qū)間”可以是[2,3];
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是
 
.(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①“向量a,b的夾角為銳角”的充要條件是“a•b>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2

③將4個不同的小球全部放入3個不同的盒子,使得每個盒子至少放入1個球,共有72種不同的放法;
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是
.(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年四川省南充一中高三(下)6月適應(yīng)性考試數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給出下列四個命題:
①“向量a,b的夾角為銳角”的充要條件是“a•b>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有
③將4個不同的小球全部放入3個不同的盒子,使得每個盒子至少放入1個球,共有72種不同的放法;
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是    .(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省漳州市高三5月適應(yīng)性練習(xí)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

給出下列四個命題:
①“向量a,b的夾角為銳角”的充要條件是“a•b>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有;
③將4個不同的小球全部放入3個不同的盒子,使得每個盒子至少放入1個球,共有72種不同的放法;
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是    .(請寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案